
Physics 2233 : Chapter 34 Examples : Interference and Polarization

Two sources of waves (sound, EM, water, etc) of the same frequency can interfere with one another,
ranging from complete cancellation (destructive interference) to complete enhancement (construc-
tive interference).

Let s1 be the distance from source S1 to some point of interest, and s2 be the distance from source
S2 to the point of interest. If the two sources are in phase constructive interference will occur
if the path difference ∆s = s2 − s1 is an exact multiple of the wavelength λ, and destructive
interference will occur if the path difference is an integer number of wavelengths plus an additional
half-wavelength.

In General (figures a,b,c)

• Constructive Interference : s2 − s1 = mλ for m = 0,±1,±2, etc

• Destructive Interference : s2 − s1 = (m+ 1
2
)λ for m = 0,±1,±2, etc

• Intensity : I = Io cos
2(π∆s

λ
) where ∆s = s2 − s1

Far Field Approximation (figure d) : only when l >> d

Let the slit separation distance be d. If the observation point is far away l >> d, then the two
paths are essentially parallel and we can write the path difference as s2 − s1 = d sin θ and the
constructive and destructive situations reduce to:

• Constructive Interference : d sin θ = mλ for m = 0,±1,±2, etc

• Destructive Interference : d sin θ = (m+ 1
2
)λ for m = 0,±1,±2, etc

• Intensity : I = Io cos
2(πd sin θ

λ
)



Small Angle Approximation : only when d >> λ

If the wavelength λ is much smaller than the source sep-
aration distance d there will be very many small angle
solutions.
In the classic double-slit experiment, a screen is located
a distance l from the slits, with l >> d. Defining a co-
ordinate system on the screen with x = 0 at the location
of the central spot, the other bright and dark spots are
located at:

• Constructive Interference : xm = m lλ
d
for m = 0,±1,±2, etc

• Destructive Interference : xm = (m+ 1
2
) lλ
d
for m = 0,±1,±2, etc

• Intensity : I = Io cos
2(πd

λl
x)

Thin Film Interference

Some fraction of the incoming light will reflect off both
the top and bottom surfaces of the thin film, so the ‘sig-
nal’ reaching the observer consists of two waves that may
interfere with one another. The extra path length for the
ray reflecting off the bottom surface will be twice the
thickness of the film.
Things to watch for:

• EM waves reflecting off a material with a higher
index of refraction undergo a 180o phase shift.

• While in the film the wavelength changes to: λ =
λo/nfilm

From earlier, when the path difference equals some multiple of the wavelength, 2t = mλ constructive
interference occurs, but the 180o phase shift noted above means that this may produce destructive
interference instead.

Each case must be considered carefully.



Polarization

Polarized light hitting a polarizing filter: I = Io cos
2(θ), where θ is the angle between the direction

of the electric field in the incoming light and the angle of the filter.

Unpolarized light hitting a polarizing filter: I = 1
2
Io

Polarizer and incoming polarized light

Polarizer and incoming Unpolarized Light

Brewster’s angle: at this incoming angle, the re-
flected and refracted light beams are orthogonal
and each is almost entirely polarized in opposite
directions.
tan θp = n2/n1 (n1 for the medium the EM wave is
traveling through; n2 is the medium it is reflecting
off of).



Two-source far-field intensity patterns. Note that in I = Io cos
2(πd sin θ

λ
) we see that only the

ratio of d/λ matters, so here we plot the intensity patterns for various such ratios. In all these
intensity diagrams, the antennas are positioned along the Y axis, sometimes shown as little dots to
represent the configuration, and θ = 0 represents the +X direction, which is to the right.

d/λ = 0.40 d/λ = 0.50

d/λ = 0.75 d/λ = 1.00

d/λ = 1.50 d/λ = 4.32 (from Example 22)

(See also examples 20 and 21.)



Example 1 Two coherent sources A and B of radio waves are 5.00 m apart. Each source emits
waves with wavelength 6.00 m. Consider points along the line between the two sources. At what
distances, if any, from A is the interference (a) constructive and (b) destructive?

Note: The wording of this problem can be confusing, but
here the ‘receiver’ is to be located along the (infinitely
long) line that passes through A and B. So draw a line
that passes through A and B, extending off to each side
past the points as well.

Constructive interference occurs when the difference in the path lengths is an exact multiple of the
wavelength, and destructive interference when the path difference is an exact multiple plus half a
wavelength.

(a) For constructive interference the path difference must be mλ where m = 0,±1,±2, .... Let’s set
up a coordinate system that starts at antenna A (at x = 0) and runs through B (at x = 5).

First, let’s consider that the receiver is located somewhere between the two antennas. Then the
distance from a receiver at x to antenna A will be just x. The distance from the receiver to antenna
B will be 5 − x. The difference in the path lengths then is (x) − (5 − x) and that has to be some
multiple m of 6 (meters) so (x) − (5 − x) = 6m or 2x − 5 = 6m or finally x = (6m + 5)/2. Now,
at m = 0, this yields x = 2.5 (a point that is exactly in the middle of the two antennas). For any
larger values of m, the value of x will be outside of the line segment between the two antennas, so
we have to derive a different equation.

Now, let’s assume that the receiver location is outside the line segment between A and B. The
situation is completely symmetric here, so let’s assume x is off to the right of B (still keeping our
coordinate system where A was located at x = 0 and B was located at x = 5. Then now the distance
from the receiver to A will be x and the distance from the receiver to B will be x− 5. (Remember
‘distance’ is a positive number, so we’re arranging things so that this simple calculation produces a
positive number.). The path difference then will be (x)− (x− 5) which is just 5. Well 5 is not any
multiple of 6 so there won’t be any places there constructive interference occurs out here.

So in summary, the only place we will get constructive interference at this frequency is right at the
midpoint between the two antennas.

(b) For destructive interference, the path difference has to be (m + 1
2
)λ for m = 0,±1,±2, .... As

argued above, the path difference cannot exceed 5 meters (which happens when the receiver is either
to the left of A or the right of B). Here λ = 6 so our path difference equation becomes 6(m + 1

2
)

for m = 0,±1,±2, .... For m = 0, the path difference would be 3 m. For m = −1, the path
difference would be −3 m. For any other values of m, the difference exceeds 5 meters, so will not
be possible. Both of our possible solutions have magnitudes less than 5, so we know the receiver
must be somewhere between the two antenna. If x is the location of the receiver, then the distance
to antenna A is just x. The distance to receiver B is 5 − x. The path difference rb − ra must be
either 3 or −3, so (5− x)− x = 3 from which x = 1, or (5− x)− x = −3 from which x = 4. So the
receiver is on the line between the two transmitters, either 1 meter to the right of A, or 1 meter to
the left of B.



Example 3 A radio station operates at a frequency of 120 MHz and has two identical antennas
that radiate in phase. Antenna B is 9.0 m to the right of antenna A. Consider point P between the
antennas and along the line connecting them, a horizontal distance x to the right of antenna A. For
what values of x will constructive interference occur at point P?

The figure here sketches out the situation. We were given
that the point is somewhere between the two antennas.
Putting an origin at A with the +x axis going off the
right through B, then the distance from the point P to
A is just rA = x and the distance (a positive quantity)
from P to B is rB = 9−x. (Note that unlike the previous
problem, we are only interested in the points on the line
segment between the two antennas.)

The path difference is: rB − rA = (9− x)− (x) = 9− 2x. For constructive interference, this must
be a multiple of the wavelength, so 9− 2x = mλ.

Well we have the frequency here, not the wavelength, but λ = c/f = (2.998 × 108 m)/(120 ×
106Hz) = 2.50 m.

9−2x = mλ becomes 9−2x = 2.5m or x = 9−2.5m
2

or finally x = 4.5−1.25m. (Note we’ve dropped
the m symbol for the units of meters to avoid confusion with the m symbol that is being used to
count the number of wavelengths.) So we are now looking for solutions to this equation for which
x is also somewhere between 0 and 9 (since we were told that the point is between the two towers).
There are several such solutions:
m = 0 gives x = 4.5
m = +1 gives x = 4.5− (1)1.25 = 3.25
m = +2 gives x = 4.5− (2)1.25 = 2.00
m = +3 gives x = 4.5− (3)1.25 = 0.75
m = −1 gives x = 4.5− (−1)1.25 = 5.75
m = −2 gives x = 4.5− (−2)1.25 = 7.00
m = −3 gives x = 4.5− (−3)1.25 = 8.25
All other values of m produce x values that are either negative or larger than 9, and are therefore
NOT between the two antennas.

(Note: if we were interested in points along the line extending past A and B on either side, the path
difference from the receiver to the two antennas will always be 9 meters which is not a multiple of the
wavelength, so there will not be any locations out there where constructive interference can occur.
For destructive interference to occur, we would need to find some multiple m of the wavelength such
that (m+ 1/2)λ = 9). Substituting in λ = 2.5 and multiplying both sides by 2: (2m+ 1)(2.5) = 9.
Multiplying by two again: (2m + 1)(5) = 18 from which m = 1.3 which is not an integer, so there
are no points on the line extensions where complete destructive interference occurs either.)



Example 5 Two speakers, emitting identical sound waves of wavelength 2.0 m in phase with each
other, and an observer are located as shown in the figure.

(a) At the observer’s location, what is the path differ-
ence for waves from the two speakers. (b) Will the sound
waves interfere constructively or destructively at the ob-
server’s location - or something in between constructive
and destructive. (c) Suppose the observer now increases
her distance from the speakers to 17 m staying directly in
front of the same speaker as initially. Answer the ques-
tions for parts (a) and (b) for this new situation.

(a) Let r1 be the distance from the right speaker to the listener and r2 be the distance from the left

speaker to the listener. Then r1 = 8 and r2 =
√
(6)2 + (8)2 = 10.0 (meters). The path difference is

r2 − r1 = 10− 8 = 2 (meters).

(b) Since the path difference is an exact multiple of the wavelength (which was also 2 meters), then
constructive interference will occur at this point.

(c) If we increase the distance of the listener to 17 meters from the right speaker, then r1 = 17 and

r2 =
√
(6)2 + (17)2 = 18.03 The path difference then is r2 − r1 = 18.03 = 17 = 1.03. This is almost

exactly equal to half the wavelength, so nearly complete destructive interference will occur.



Example 6 Two speakers, emitting identical sound waves are six meters apart. Assume a listener
is located 8 meters in front of the right speaker, perpendicular to a line connecting the two speakers.
This is basically the same figure as in the previous problem, but this time we want to determine
all frequencies where constructive or destructive interference will occur. I.e. standing
at this position, the person will hear some frequencies with a doubled intensity, and some (other)
frequencies will be completely missing.

We definitely can’t use the ‘far field’ approximation here since the distance from the listener to the
sources is not ‘much greater than the source separation distance’. Sound wavelengths vary from
centimeters to meters, so the speaker separation distance is not d >> λ so we can’t use the small
angle approximation either. We’ll just do this one using the general equations for constructive and
destructive interference.

Since our interference equations involve a counter m, to avoid confusion with using m to denote
meters, we’ll make sure all our lengths are in meters and just skip writing the units.

Path Difference

Distance from listener to the right speaker: s1 = 8.000

Distance from listener to the left speaker: s2 =
√
(6)2 + (8)2 =

√
100 = 10.0

Path difference: s2 − s1 = 10.0− 8.0 = 2.000 (meters).

Constructive Interference will occur when the path difference is a multiple of the wavelength,
so 2.000 = mλ. That would give us wavelengths, but we are interested in frequencies: f = v/λ or
λ = v/f where v = 343 m/s is the speed of the waves (sound, in this case) so we can write this as:

2.00 = mλ = m343
f

or f = m 343
2.00

= (m)(171.5 Hz)

For all these frequencies, the sound will have a doubled intensity. m = 0 yields f = 0 which isn’t
audible. m = 1 yields 171.5 Hz; m = 2 yields 343.0 Hz and so on, up to m = 116 which yields
f = 19, 894 Hz and any higher m gives a frequency we can’t hear.

Destructive Interference will occur when the path difference equals a multiple of the wavelength
plus an extra half wavelength. After going through the same process above: f = (m+ 1

2
)(171.5 Hz)

so we get complete elimination of frequencies 85.75 Hz, 257.3 Hz, 428.8 Hz, and so on.

How real is this?

The results we found above sound pretty bad: listening to music when we are located ‘off-center’
from the speakers should result in major artifacts across the entire spectrum.

Sound from each speaker radiates outward, bouncing off furniture and anything else nearby, so there
are many paths from each speaker to your ears, each with it’s own different path length, making
the actual constructive and destructive interference much more complex. If you were to sit in a
special audiophile room designed to reduce all these other reflections and sat off-center from the
speakers, this effect should be noticeable though.



Example 7 In problem 5, the speakers were located 6 m apart and were emitting sound with
a wavelength of λ = 2 m (which corresponds to a frequency of f = v/λ = (343 m/s)/(2 m) =
171.5 Hz). We found that when the listener was located 8 m from the speaker on the right, they
encountered constructive interference (the sound would be louder), and when they were located
17 m from speaker on the right, they encountered almost perfect destructive interference (the
sound would be nearly gone).

Suppose the speaker is playing just f = 171.5 Hz (so
λ = 2 m) and the listener changes their distance from
the speaker on the right but continues to move along a
line perpendicular to the line between the two speakers
(see figure).

At what distances from the speaker on the right
will they encounter destructive or constructive in-
terference? Problem 5 gave us one solution for each
case; let’s find all of them. Let y be a coordinate starting
at y = 0 at the speaker on the right and then heading
off away from it. At what y values will constructive or
destructive interference occur?

Let s2 be the path from the left speaker to the listener. We can write this in terms of y as

s2 =
√
y2 + (6)2.

Let s1 be the path from the right speaker to the listener; clearly s1 = y. s2 will always be larger
than s1 so the path difference s2−s1 will always be positive, and so we only need to consider values
of m that are zero or positive.

Constructive interference will occur when s2−s1 = mλ so
√
y2 + 36−y = 2m. Careful: that m

symbol is the counter m = 0, 1, 2, .... We can rearrange this into the form:
√
y2 + 36 = y + 2m and

squaring both sides: y2 + 36 = y2 + 4my + 4m2. Subtracting y2 from both sides and rearranging

terms, we find that y = 36−4m2

4m
.

m = 0 leads to y = ∞ which I suppose is technically true since the path to each is the same huge
number, but let’s look for realistic solutions.

m = 1 leads to y = 8 (meters); m = 2 leads to y = 2.5 (meters); and m = 3 leads to y = 0. So
there are two more locations in addition to the y = 8 we already knew about.

Destructive interference will occur when s2−s1 = (m+ 1
2
)λ. so

√
y2 + 36−y = (m+0.5)(2). The

right hand side we can write as 2m+1. We can rearrange this into the form:
√
y2 + 36 = y+(2m+1)

and squaring both sides: y2+36 = y2+2y(2m+1)+ (2m+1)2. Subtracting y2 from each side and

rearranging terms: y = 36−(2m+1)2

2(2m+1)
.

m = 0 gives y = 17.5 (meters), which is about where problem 5 had us check. m = 1 gives y = 4.5
(meters) and m = 2 gives y = 1.1 (meters).

(Note if you write out all these y values, the constructive and destructive points alternate.)



Example 10 Young’s experiment is performed with light from excited helium atoms (λ = 502 nm).
Fringes are measured carefully on a screen 1.20 m away from the double slit, and the center of the
20th fringe (not counting the central bright fringe) is found to be 10.6 mm from the center of the
central bright fringe. What is the separation of the two slits?

The value of y20 here is MUCH smaller than the distance from the slits to the screen, so we have tiny
angles and can use the approximation that ym = Rmλ

d
. Rearranging to solve for d: d = Rmλ/ym.

It’s unfortunate that this field uses m to count the fringe number and we also use m to represent
the units of meters. Safest thing to do is convert everything to standard metric units first so we can
skip writing the units symbols, and know that the final answer will also come out in proper metric
units (lengths in meters, for example).

So here, R = 1.20 (meters), y20 = 10.6 × 10−3 (meters), λ = 502 × 10−9 (meters) and m = 20 so

d = Rmλ/ym = (1.20) (20)(502×10−9)
10.6×10−3 = 1.14× 10−3 (meters), or 1.14 mm.

(As a check, tan θ20 = y20/R = (10.6× 10−3)/1.20 yields θ20 = 0.51o or 8.9× 10−3 rad which is tiny
enough that the approximations of tan θ and sin θ being approximately equal to θ (in radians) is
true.)



Example 12 Two slits spaced 0.450 mm apart are placed 75.0 cm from a screen. What is the
distance between the second and third dark lines of the interference pattern on the screen when the
slits are illuminated with coherent light with a wavelength of 500 nm?

The dark lines correspond to destructive interference instead of constructive, so the path difference
should be a half-wavelength off from an exact multiple or d sin θ = (m + 1

2
)λ from which sin θ =

(m + 1
2
)λ/d. The wavelength is λ = 500 × 10−9 m and the slit distance is d = 0.45 × 10−3 m so

λ/d is extremely small. We can thus use the same ‘small angle’ approximations we used for the
constructive interference case and assume that for all practical purposes: ym = R(m + 1

2
)λ/d (i.e.

the same equation the book derived for constructive interference, but now we have that extra half
wavelength to produce destructive interference).

Each time we increasem by one in this equation, the value of y increases by a distance of ∆y = Rλ/d
so the distance between successive dark lines here is ∆y = (0.75 m)(500 × 10−9 m)/(0.450 ×
10−3 m) = 8.33× 10−4 m or 0.833 mm.

(Note that the bright fringes are located at ym = mRλ/d so the distance between successive bright
fringes is also ∆y = Rλ/d.)

Example 14 Coherent light with wavelength 450 nm falls on a double slit. On a screen 1.80 m
away, the distance between dark fringes is 4.20 mm. What is the separation of the slits?

The distance between the fringes (either light to light, or dark to dark) we showed in the previous
problem to be ∆y = Rλ/d. Here we have the separation distance, the wavelength and the distance
to the screen and desire the slit separation, so we rearrange this to solve for d = Rλ/∆y. Here
then: d = (1.80 m)(450× 10−9 m)/(4.20× 10−3 m) = 1.93× 10−4 m or d = 0.193 mm.

Example 16 Coherent light from a sodium-vapor lamp is passed through a filter that blocks
everything except light of a single wavelength. It then falls on two slits separated by 0.460 mm. In
the resulting interference pattern on a screen 2.20 m away, adjacent bright fringes are separated by
2.82 mm. What is the wavelength?

Basically the same as the previous two problems. We found that the separation between adjacent
dark fringes (or adjacent bright fringes) is ∆y = Rλ/d. Here, we have the distance to the screen,
the separation distance between adjacent fringes of the same type, and the distance between the
slits, so we rearrange this to solve for the wavelength: λ = d∆y/R. Here then: λ = (0.460 ×
10−3 m)(2.82× 10−3 m)/(2.20 m) or λ = 5.9× 10−7 m = 590× 10−9 m = 590 nm.



Example 20 : Wireless Router (A)

A common design for wireless routers includes two antennae. Consider a wireless router that
operates at 2.4 Ghz and has two antennae separated by 14.5 cm. At what angles will the wireless
signal be particular strong and weak?

The signal has a wavelength of λ = c/f = (3× 108 m/s)/(2.4× 109 /s) = 0.125 m or 12.5 cm.

The antenna separation d = 14.5 cm and wavelength λ = 12.5 cm are similar, so we can’t use the
small angle approximation here.

Technically, if the router is in the same room, I can’t use the far field approximation either, but for
purposes of this problem let’s assume it is located ‘far away’ (other end of the house maybe).

Constructive interference will occur when d sin θ = mλ or here: sin θ = mλ/d = (m)(12.5)/(14.5) =
(m)(0.8621)

m = 0 yields θ = 0, so we have a strong signal along a line through the perpendicular bisector of
the two antennae (as we always do).

It looks like we’ll have another strong angle though. When m = ±1 we have θ = ±59.55o.

Destructive interference will occur when d sin θ = (m+ 1
2
)λ or going through the same steps as

above: sin θ = (m+ 1
2
)(0.8621).

This has two solutions. For m = 0 we have sin θ = (0.5)(0.8621) or θ = 25.53o. For m = −1 we
have sin θ = (−0.5)(0.8621) or θ = −25.53o.

At those angles, we get no signal at all.

The complete intensity pattern for this situation
is shown in the figure.

θ = 0 is pointing to the right, and the antennas are
located along the Y axis, so that direction repre-
sents someone sitting directly in front (or behind)
the router: i.e. located along the line formed by
the perpendicular bisector through the line seg-
ment connecting the two antennas. Note that this
intensity drops off quickly as you move off that di-
rect line though. At 0o we have full strength, by
25.53o we have none at all.

In the direction ‘in-line’ with the two antennas
(i.e. in the Y direction), we get much wider cov-
erage. (Not full intensity, but at least I can move
around in that area quite a bit and still have a
strong signal.)



Example 21 : Wireless Router (B)

The identical wireless router in the previous problem can transmit signals at two frequencies. It can
use the 2.4 Ghz band which we used in the previous problem, but it can also transmit at 5.0 Ghz.

If we operate the router at this higher frequency, at what angles will the signal be particularly
strong or weak?

The signal now has a wavelength of λ = c/f = (3× 108 m/s)/(5.0× 109 /s) = 0.060 m or 6 cm.

The antenna separation d = 14.5 cm and wavelength λ = 6 cm are still similar enough that we
can’t use the small angle approximation. We need d >> λ to be able to do that and here d is only
2 or 3 times larger than λ.

Technically, if the router is in the same room, I can’t use the far field approximation either, but for
purposes of this problem let’s assume it is located ‘far away’ (other end of the house maybe).

Constructive interference will occur when d sin θ = mλ or here: sin θ = mλ/d = (m)(6.0)/(14.5) =
(m)(0.4138). Trying various values of m, m = 0 yields θ = 0. m = ±1 yields θ = ±24.4o and
m = ±2 yields θ = ±55.85o. Operating at this frequency we have more angles where constructive
interference is happening.

Destructive interference will occur when d sin θ = (m+ 1
2
)λ or going through the same steps as

above: sin θ = (m + 1
2
)(0.4138). Trying m = 0 and small positive and negative integers leads to

angles of ±11.94o and ±38.37o. At those angles, we get no signal at all.

The complete intensity pattern for this situation
is shown in the figure. Note that although we do
not have complete cancellation at 90 degrees, it’s
pretty close. Compare this pattern to the same
router operating at 2.4 Ghz (previous problem).
At the lower frequency, we have a fairly broad
high-ish intensity in a direction parallel with the
two antenna. At this higher frequency, we get
almost nothing.

This is a pretty undesirable intensity pattern since
we have to be located along very specific directions
to get a strong signal. My guess is that when
the router is operating at this higher frequency, it
will only use a single antenna so that it radiates
uniformly in all directions.



Example 22 An FM radio station has a frequency of 107.9 MHz and uses two identical antennas
mounted at the same elevation, 12.0 m apart. The antennas radiate in phase. The resulting
radiation pattern has a maximum intensity along a horizontal line perpendicular to the line joining
the antennas and midway between them. Assume that the intensity is observed at distances from
the antennas that are much greater than 12.0 m. (a) At which other angles (measured from the
line of maximum intensity) is the intensity maximum? (b) At which angles is it zero?

(a) At large distances from the sources, we have constructive interference (i.e. maximum intensity)
where d sin θ = mλ for m = 0,±1,±2, .... We have the frequency, but need the wavelength:
λ = c/f = (2.998 × 108 m/s)/(107.9 × 106Hz) = 2.78 m. (Where that m represents the units of
meters, not the integer m that is used to count the intensity peaks. To avoid confusion, we’ll just
make sure everything is measured in standard metric units and drop the m units...)

We might be tempted to assume that the angle is small so that sin θ is about equal to θ in which
case θ = mλ/d. But here λ/d = (2.78)/(12) = 0.23 which would give us for m = 1 an angle of
0.23 rad or 13.3o and the higher m values would be multiples of this. These are not small angles.

Using the exact (far-field) equation: d sin θ = mλ for m = 0,±1,±2, .... or sin θ = mλ/d =
(m)(2.78)/(12.0) = 0.232m so θ = sin−1(0.232m). (Again, watch out for potential confusion involv-
ing the m symbol. It doesn’t represent meters here but the counter m = 0,±1,±2, ....)

At m = 0, we are located right along a line perpendicular to the two antennas. The path distance
will be zero and that gives the first maximum intensity line. The question was interested in the
other angles. The sine function is odd, so if we solve for θ for m = 1, we also have the solution for
m = −1 (just flip the sign of the angle). Plugging in the first few positive and negative values for m
we get θ = ±13.4o,±27.6o,±44.1o,±68.1o. Larger values for m give values of 0.232m that are larger
than 1, so we can’t take the inverse sine. Thus these eight angles (plus the one at m = 0 which was
the line perpendicular to the line between the antennas) are where constructive interference (high
intensity) will occur.

(b) At large distances from the sources, we have destructive interference (i.e. minimum intensity)
where d sin θ = (m + 1

2
)λ for m = 0,±1,±2, .... Following through the same arguments as above,

we end up with the equation sin θ = (m + 1
2
)λ/d = (m + 1

2
)(0.232). We can plug various values in

for m (positive, negative, and zero) until the right hand side exceeds a magnitude of 1 again and
find that: θ = ±6.66o,±20.4o,±35.5o,±54.3o. (Values of m larger than 3 or less than -4 give a
right-hand side that exceeds the range of the arc-sine function.)



Example 30 When viewing a piece of art that is behind glass, one often is affected by the light
that is reflected off the front of the glass (called glare) which can make it difficult to see the art
clearly. One solution is to coat the outer surface of the glass with a film to cancel part of the glare.
(a) If the glass has a refractive index of 1.62 and you use TiO2, which has an index of refraction
of 2.62, as the coating, what is the minimum film thickness that will cancel light of wavelength
505 nm? (b) If this coating is too thin to stand up to wear, what other thickness would also work?
(Find only the three thinnest ones.)

Constructive interference occurs when waves are exactly in phase (the peak of one arriving at the
same time as the peak of the other). For destructive interference, we need the two waves to arrive
exactly half a wavelength out of phase.

The thing we have to be careful of when light is reflecting is that is can change its phase (like a
transverse wave on a string when it reaches a fixed versus free end).

When electromagnetic waves reflect, the phase of the re-
flected waves depends on the indices of refraction of the two
materials at the interface. When waves in one medium hit
a medium with a higher index of refraction, the reflected
waves pick up a 180o phase shift.

At the front surface of the film, light in air (n = 1) reflects
from the film (n = 2.62) and the reflected light picks up a
180o phase shift. At the back surface of the film, light in the
film (n = 2.62) reflects from glass (n = 1.62) and there is no
phase shift due to this reflection. So we have light reflected
from the front surface of the film (that now has a 180o phase
shift) combining with light that has passed through the film,
reflected off the film-glass interface without any phase shift,
passed back up through the film and exited into the air.

We want these two signals to combine destructively to eliminate the glare at the given
wavelength. Since we already have a 180o (i.e. half-wavelength) phase shift, that means that the
light must travel an exact integer number of wavelengths while it is inside the film. That way when
it combines with the (out of phase) light that was reflected directly from the surface of the film,
they’ll cancel each other out.

The path difference for the two rays is 2t (twice the thickness of the film). The wavelength of
the light in the film is λ = (505 nm)/(2.62) = 192.7 nm. We need the thickness of the film
to be such that the path difference (2t) is some multiple of the wavelength, or: 2t = mλ. So:
t = mλ/2 = m192.7 nm

(2)
= (m)(96.4 nm). (OK, that’s a pretty horrible notation, but what we’re

meaning there is the integer m times 96.4 nanometers.) The minimum thickness (at m = 1) would
be 96.4 nm.

(b) The next three thicknesses would be integer multiples of that thickness or 192 nm, 289 nm,
386 nm, and so on. (All these are incredibly thin. A typical metallic molecule might have a diameter
of 1 nm so these films are only a few hundred atoms thick and are probably formed by spraying the
material onto the glass.)



Example 31 : car window glass

There are thin films you can put on the outside of your car windows to reduce the amount of light
getting into the car. What is the minimum thickness such that incoming light of wavelength 505 nm
is mostly reflected back? The film has an index of refraction of 1.95 and the auto glass has an index
of refraction of 1.52.

Note how this situation is different from the previous one. In the ‘art’ case, we wanted
the reflected light to cancel at some wavelength, which means we wanted destructive interference
to occur between the two reflected rays. In this case, we want light to not get into the car,
which ultimately means we need it to mostly reflect back out: we want the two reflected signals
(the ray reflecting off the air-film interface, and the ray reflecting off the film-glass interface) to
constructively interfere and carry away as much of the incoming intensity as we can.

The ray bouncing off the air-film interface will
pick up a 180o phase shift. The ray that enters
the film and reflects off the film-glass interface will
not.
So if we want constructive interference to happen
between these two rays, we need the waves to pick
up an extra half-wavelength on their path through
the film. Specifically, this time we’re looking for:
2t = (m + 1

2
)λ where λ is the wavelength of

the light while in the film: λ = λo/nfilm =
(505 nm)/(1.95) = 259 nm, so our constructive
interference equation for this situation becomes:
2t = (m+ 0.5)(259 nm).

The smallest thickness will occur when m = 0, leading to t = 64.7 nm which is probably much
thinner than the actual film, unless it’s done at the factory by spraying it on. The same constructive
interference will occur at any higher integer value of m though as well, so eventually we’ll arrive at
a realistic, manufacturable thickness. Using higher values of m we arrive at thicknesses of 65 nm,
194 nm, 324 nm, 453 nm, and so on. Completely destructive interference for the reflected light
would occur at thicknesses midway between each of these: at these other thicknesses, most of the
light would pass into the car instead of being reflected back out.

Whatever thickness we use to cut down the light coming into the car, it must be very precisely
maintained since apparently it only takes a few tens of nanometers to switch from constructive to
destructive interference.



Example 32 Two rectangular pieces of plane glass are laid one upon the other on a table. A thin
strip of paper is placed between them at one edge so that a very thin wedge of air is formed. The
plates are illuminated at normal incidence by 546 nm light from a mercury vapor lamp. Interference
fringes are formed, with 15.0 fringes per centimeter. Find the angle of the wedge.

Left figure: The fringes are produced by interference between light reflected from the top and
bottom surfaces of the air wedge. The refractive index of glass is greater than that of air, so
the waves reflected from the top surface of the air wedge have no reflection phase shift, but the
waves reflected from the bottom surface of the air wedge do: they are reflected with a half-cycle
phase shift. So in that air wedge, if exactly an integer number of waves ‘fits’, the two reflected
rays will end up canceling each other out (destructive interference, dark bands). For constructive
interference, in this case we’ll need an integer number of waves plus a half a wavelength to fit. The
condition for constructive interference when one of the paths has a half-wavelength phase shift then
is 2t = (m+ 1

2
)λ or t = (m+ 1

2
)λ/2.

Looking at the geometry of the wedge now (right figure), let’s say that the bright fringes (construc-
tive interference) are located at positions x along the interface. These positions are related to the
thickness of the air wedge t, and the angle between the glass slides by tan θ = t/x so t = x tan θ. But
the special thicknesses where constructive interference will occur are t = (m+ 1

2
)λ/2, so combining

these two equations for t we see that: (m + 1
2
)λ/2 = x tan θ or xm = (m + 1

2
) λ
2 tan θ

. The distance
between two adjacent fringes, xm+1 and xm would be ∆x = λ

2 tan θ
or since we’re trying to find the

angle, we can rearrange this to be tan θ = λ
2∆x

.

We have the wavelength of the light, but what is the spacing between the fringes? We know there
are 15 fringes per centimeter, so they are 1

15
centimeter apart or 0.0667 cm or ∆x = 6.7× 10−4 m.

tan θ = λ/(2∆x) = (546× 10−9 m)/(2× 6.7× 10−4 m) = 4.09× 10−4. This is extremely small, and
we can make the assumption that tan θ = θ so θ = 4.09× 10−4rad (or 0.0234o).

(This experiment is usually done with very small glass slides (like you would put under a microscope)
since it is difficult to manufacture larger glass materials that remain very flat. The weight of the
glass itself will cause it to bend. If the size of the glass slide is, say, 5 cm then we could estimate
the thickness of the sliver of paper we stuck in on the right side: tan θ will be the thickness of the
paper divided by the width of the glass slide so 4.09 × 10−4 = Tpaper/(0.05 m) which implies that
Tpaper = 2×10−5 m. A typical stack of laser printer paper might have 500 sheets and be about 6 cm
or 0.06 m thick which implies a thickness of (0.06 m)/(500) = 1.2× 10−4 m or 12× 10−5 m which
is six times thicker than the paper apparently being used here. If we stuck one of these ‘normal’
pieces of paper between the slides, the angle would be six times larger. Still pretty tiny so the
tangent of that angle is six times what we had before. That causes the spacing between the fringes
to be six times closer together. That would cause there to be 90 fringes per centimeter instead of
15, which would be extremely difficult to perceive with the naked eye, but could still be resolved
under a microscope. This method can be used to determine the sizes of very small objects.)



Example 34 The walls of a soap bubble have about the same index of refraction as that of plain
water, n = 1.33. There is air both inside and outside the bubble. (a) What wavelength (in air) of
visible light is most strongly reflected from a point on a soap bubble where its wall is 290 nm thick?
To what color does this correspond? (b) Repeat part (a) for a wall thickness of 340 nm.

Consider the interference between rays reflected from the
two surfaces of the soap film. Strongly reflected means
we want constructive interference so the two rays should
constructively interfere when they had out back towards
our eyes. The ray that bounces off the outer surface
of the film will have a 180o phase shift. The ray that
bounces off the inner surface will not. So while the ray
is inside the film itself, it needs to pick up that extra
half-wavelength in order to combine constructively with
the ray that bounced directly off the outer surface of the
film.

From the discussion above, we see that the path difference 2t must correspond to some integer
number of waves plus an additional half wavelength to compensate for the phase shift. So for
constructive interference we must have here: 2t = (m + 1

2
)λ, where m = 0, 1, 2, ... and where λ is

the wavelength of the light while it is inside the film. That wavelength is equal to λo/n where λo is
the wavelength in air and n is the index of refraction of the soap film. So finally: 2t = (m+ 1

2
)λo

n
.

We’re ultimately interested in the wavelengths for the case of varying the thickness of the film, so
we can rearrange this into: λo =

2tn
m+ 1

2

.

(a) If the thickness of the film is 290 nm and the index of refraction is n = 1.33, we can write that

last equation as: λo =
2tn
m+ 1

2

= (2)(290 nm)(1.33)
m+0.5

= (771.4 nm)/(m+ 0.5).

Computing the wavelength for various values of m: m = 0 gives λ = 1543 nm (not visible), m = 1
gives λ = 514 nm (visible, green), and m = 2 gives λ = 308 nm (not visible). We don’t need to
go further since any higher m will just put the wavelength even further from what our eyes can
perceive. So where the bubble has this thickness, green light is reflected with twice the amplitude
of other colors and the bubble might look primarily green.

(b) Repeating the calculation for a part of the soap bubble that is 340 nm thick, λo = 2tn
m+ 1

2

=
(2)(340 nm)(1.33)

m+0.5
= (904.4 nm)/(m+ 0.5).

Computing the wavelength for various values of m: m = 0 gives λ = 1809 nm (not visible), m = 1
gives λ = 603 nm (visible, orange), and m = 2 gives λ = 362 nm (not visible). Again, we don’t
need to go further since any higher m will just put the wavelength even further from what our
eyes can perceive. So where the bubble has this thickness, orange light is reflected with twice the
amplitude of other colors and the bubble might look primarily orange.

In general, the thickness of the soap film fluctuates due to tiny air currents and undulations of the
surface of the bubble, so we see various colors shifting around it’s surface.



Example 36 A compact disc (CD) is read from the bottom by a semiconductor laser with wave-
length 790 nm passing through a plastic substrate of refractive index 1.8.

When the beam encounters a pit, part of the beam is
reflected from the pit and part from the flat region be-
tween the pits, so these two beams interfere with each
other. What must the minimum pit depth be so that the
part of the beam reflected from a pit cancels the part of
the beam reflected from the flat region? (It is this cancel-
lation that allows the player to recognize the beginning
and end of a pit.)

Both reflections occur for waves in the plastic substrate reflecting off the reflective coating, so
whatever phase shift might be being induced, the same thing is happening to both of the rays and
no net phase shift will occur. The condition for destructive interference then will be that the path
difference (twice the thickness (well, depth) of a pit) should be m+ 1

2
wavelengths, so 2t = (m+ 1

2
)λ

or t = (m+ 1
2
)λ
2
.

We were given the wavelength of the light IN AIR, but here the path difference is being created by
light while it is within the plastic substrate. The wavelength of the light in the substrate is not the
same as in air, but we can compute it: λ = λo/n. Leaving things symbolically for now, this gives
us: t = (m+ 1

2
)λo

2n
.

The smallest thickness will occur where m = 0 at which point t = 1
2
λo

2n
= λ

4n
= 790 nm

(4)(1.8)
= 110 nm or

just 0.11 µm.

According to what is described in this problem, when information is written on a CD or DVD,
the (writing) laser beam has to carve out a little pit that has this depth. Note that this is a
physical change to the medium itself, which would be difficult to reverse. Pre-recorded CD’s can
be manufactured this way, and ‘write-once’ CD’s (CD-R) might use this technology as well, but
re-writable CD’s use a different technology entirely that involves changing the reflectance of the
substrate in a reversible way, rather than permanently burning little pits into it.



Example 38 A radio telescope, whose two an-
tenna are separated by 55 m, is designed to re-
ceive 3.0 MHz radio waves produced by astro-
nomical objects. The received radio waves create
3.0 MHz electronic signals in the telescopes left
and right antennas. These signals then travel by
equal-length cables to a centrally located ampli-
fier, where they are added together. The telescope
can be ‘pointed’ to a certain region of the sky by
adding the instantaneous signal from the right an-
tenna to a ‘time-delayed’ signal received by the
left antenna, a time ∆t earlier.

If a radio astronomer wishes to ‘view’ radio signals
arriving from an object oriented at a 12o angle
to the vertical as shown in the figure, what time
delay ∆t is necessary?

The source is very far away (millions of kilometers, or even light years) so we are definitely in the
‘far field’ situation. From the figure we can see that the signals arriving at the antenna on the
right have to travel an extra distance of (55 m)(sin 12o) = 11.435 meters, which means the signals
from the two antennas will arrive slightly out of phase, and will partly cancel each other out when
they’re combined.

We’ll have a sine wave from one antenna, plus a slightly shifted sine wave from the other. To
maximize the overall signal, we’d like to rig things so that the two signals arrive in phase. We can
do that by slightly delaying the signal from the left antenna. How much of a delay?

The signal is travelling at the speed of light c, so the signal is arriving at the left antenna earlier
by ∆t = (distance)/(speed) = (11.435 m)/(3 × 108 m/s) = 3.8 × 10−8 s which we can write as
38× 10−8 s or 38 ns (nanoseconds).

Different Question : if we remove this delay and just leave the antennas in sync, at what angles
will they ‘hear’ radio signals strongly?

Constructive interference will occur at any angle such that d sin θ = mλ or sin θ = mλ
d
.

The receiver is apparently tuned to receive signals of f = 3 MHz, so what wavelength is this?
λ = v/f = (3× 108 m/s)/(3× 106 /s) = 100 m.

We’ll have constructive interference at sin θ = m100 meters
55 meters

= (1.818)(m)

Note this has only one solution: θ = 0 (well, and the symmetric point
at θ = π). So this pair of antennas (without the delay from the first
part) will receive signals strongly along a line through their perpen-
dicular bisector. The complete antenna pattern at this frequency is
shown here. (Note: at 90o there is almost complete cancellation, but
not quite.)



Example 40 A beam of unpolarized light of intensity Io passes through a series of ideal polarizing
filters with their polarizing directions turned to various angles as shown. (a) What is the light
intensity (in terms of Io at points A, B, and C? (b) If we remove the middle filter, what will be
the intensity at point C?

When unpolarized light passes through a polarizer, its intensity is reduced by a factor of 1
2
and the

transmitted light will now be polarized along the axis of the polarizer. When (already) polarized
light is incident on a polarizer, the transmitted intensity is reduced by a factor cos2 ϕ where ϕ is
the angle between the polarization direction of the incident light and the axis of the filter.

(a) Here we have unpolarized light entering, so the intensity that is transmitted through to point
A is IA = 1

2
Io and this light is now polarized in the vertical direction.

Moving from A to B, we have incident light that is polarized vertically which now encounters a
second filter that is tilted 60o with respect to the incoming polarization, so the intensity will be
reduced here by a factor of cos2 60o or 0.25. In terms of the original intensity, then, we now have
IB = (0.25)IA = (0.25)(0.50)Io = 0.125× Io

From B to C, we have incident light that is polarized in the direction of that middle filter and it is
now hitting a third filter. That third filter is making an angle of 30o with respect to the incoming
light so the intensity at C will be reduced by a factor of cos2 30o or 0.75 with respect to the intensity
entering that filter. So in terms of the original intensity: IC = 0.75IB = (0.75)(0.125)Io = 0.0938Io.

(b) If we remove the middle filter then light coming out of the first filter will have an intensity of
1
2
Io as argued above and this light will be polarized vertically (per the polarization direction of the

first filter). When this light hits the third filter directly, we see that the angle of the light is exactly
90o off from the angle of the filter, so ϕ = 90o and the intensity that gets through will be cos2 90o

or zero.



Example 42 Three polarizing filters are stacked with the polarizing axes of the second and third
at 45o and 90o respectively with that of the first. (a) If unpolarized light of intensity Io is incident
on the stack, find the intensity and state of polarization of light emerging from each filter. (b) If
the second filter is removed, what is the intensity of the light emerging from each remaining filter?

When unpolarized light hits any polarizing filter, the intensity transmitted is reduced by half. When
already polarized light hits a polarizing filter, its intensity is reduced by cos2 ϕ where ϕ is the angle
between the light and the filter.

(a) Here, then, the intensity after passing through filter 1 will be 0.5Io and the light is now polarized
in the direction of filter 1. This light now hits filter 2 which is oriented at a 45o angle with respect
to the light, so the amplitude will be reduced by a factor of cos2 45 or 0.5. This light now hits filter
3, which is oriented at a 45o angle with respect to the incoming light, so the amplitude is cut down
by another factor of cos2 45 or 0.5. Overall then the final amplitude is (0.5)(0.5)(0.5)Io or 0.125Io.

(b) Now we remove the middle filter. The light leaving the first filter is the same as before: intensity
reduced by half, and this light is now polarized in the direction of that filter. When this light hits
the remaining filter, we see that the angle between the light and the polarizing filter is 90o so the
intensity will be multiplied by a factor of cos2 90 which is zero. So no light passes through to the
other side of that filter now.

Note what’s happening here since it seems counterintuitive. Filters 1 and 3 alone would cancel all
the light passing through them, but by adding another polarizing filter in between them the result
is some light coming through.

It’s important in these problems to take each filter one at a time and see what each does to the light
falling on it, and be especially careful about what the angle ϕ means in the intensity equation. (I.e.
that it the angle between the orientation of the incoming waves and the orientation of the filter it’s
about to interact with.)



Example 44 Consider sunlight reflecting off a water surface (such as a pool or lake). Polarizing
sunglasses can reduce this glare. Where does the sun have to be in the sky for these sunglasses to
be most effective?

Polarizing glasses are basically polarizing
filters with their axis oriented vertically.
They will be most effective when the glare
represents light that has a horizontal polar-
ization. This is exactly the situation that
occurs at the Brewster angle where the an-
gle of incidence is such that tan θ = n2/n1

where n1 is the index of refraction of the
material the signal is traveling through (in
this case air) and n2 is the index of refrac-
tion of the medium the waves are reflecting
from.

For an air-water interface, we have n1 = 1 and n2 = 1.33 so tan θ = n2/n1 = (1.33)/(1.00) = 1.33
which yields θ = 53.1o.

From the figure, we see that angle is the usual Snell convention of measuring angles relative to the
normal of the surfaces, which means here it’s an angle relative to the vertical direction. The angle
relative to the horizon then would be 90− 53 or 37o. So, in general, when the sun is 37o above the
horizon, the reflected glare is all polarized horizontally and the vertically-oriented polarizing filter
will cancel it out entirely.

Note: the time of day when that happens will vary quite a bit since it depends on the tilt of the
earth, your latitude, and where the earth is in its orbit around the sun: all those affect the maximum
angle the sun reaches in the sky at a given location on a given day of the year...


