
PH2233 Fox : Lecture 21
Chapter 37 (bits) : Early Quantum Theory and Models of the Atom

(mostly sections 37-1, 37-2, 37-10 and 37-11

Classical mechanics (PH2213) and Electricity and Magnetism (PH2223) were exceptionally accurate
ways of modelling and predicting outcomes, from mechanical structures to circuits, but by the early
part of the 20th century, experiments were yielding results that couldn’t be explained by these
classical approaches.

Black-body Radiation (bits of 37-1)

When a sample is heated up, it radiates energy in a
predictable way, called blackbody radiation. In 1900,
Max Planck applied ideas from thermodynamics (basically
statistics when vast numbers of entities are involved) and
derived that this was a statistical result if he assumed
that energy could be treated as a vast number of en-
tities called photons, each carrying an energy that de-

pended on it’s frequency or wavelength: E = hf = hc/λ ,

where h = 6.6261× 10−34 J s (now called Planck’s con-
stant), from which he showed that the curve was correctly
fit using the expression:
I(λ, T ) = 2πhc2λ−5

ehc/(λkT )−1
, now called the Planck radiation for-

mula. (NOTE: the k here isn’t the Coulomb constant we
used back in PH2223, it’s an unrelated constant called the
Boltzmann constant that appears in thermodynamics.)

This expression peaks at a wavelength λp such that λpT = 2.90×10−3 m K, where the temperatures
here are all in absolute degrees (degrees Kelvin).

This was controversial at the time due to the introduction of the idea of photons, but they helped
explain other phenomenon as well.

The fact that h exists is what splits the classical physics world we normally live in from the weird
quantum mechanical world that exists down at atomic and subatomic scales.

Let’s use E = hf = hc/λ to look at how much energy the photons involved in visible light must
have.

• Violet: λ = 390 nm so E = hc/λ = (6.63×10−34 J s)(3×108 m/s)
390×10−9 m

= 5.1 × 10−19 J Converting to

electron volts: E = (5.1× 10−19 J)× 1 eV
1.602×10−19 J

= 3.18 eV .

• Shortcut: since at this scale we’re working with wavelengths in nm and energies in eV , pre-

applying those conversions yields E = 1240 eV nm
λ

(with λ in nm, yielding E in eV directly)

• Red: λ = 750 nm so E = (1240 eV nm)/(750 nm) = 1.65 eV

• Each photon of visible light then carries energy around 2 to 3 eV .

• X-ray photons each carry energies around 100 eV to 100 keV .

• Gamma rays can carry energies well into the MeV range.



Atomic Spectra (bits of 37-10)

Even so, there were situations
where this blackbody spectrum did
not occur at all, going back to at
least the 1850’s (Geissler). When
currents were passed through gasses
(or any material vaporized into a
gas or plasma), the spectrum in-
stead took on very specific frequen-
cies. Gas discharge tube

(schematic)
Gas discharge tube (actual)

Here, we see the colors emitted by hydrogen (top) and helium (bottom) gasses

Spectrum of hydrogen gas.

Spectrum of helium gas.

Heavier elements have dramatically more complicated spectra. Here we see the light given off by
iron:

Why should the atoms emit only these specific wavelengths (of frequencies), and no
others?



Photo-electric Effect (bits of 37-2)

Gadgets like the electroscope shown on the right
were used to measure electric charge, even before
charge was well understood. If what we now know
as voltage or current were applied to the electrode
at the top, the charges would build up on the
‘leaves’ and cause them to separate. It was noticed
however that just exposing the device to ultravi-
olet light would also cause the leaves to separate,
indicating the light was inducing a charge on the
leaves somehow.

Later, it was observed that some materials (usu-
ally metals) had the odd behaviour of emitting
electrons when exposed to light.

If that weren’t enough, it was found that this
would only occur if the frequency of the light was
higher than a certain value, which was different
for each type of metal. If light of a lower fre-
quency (longer wavelength) than this threshhold
were applied, no current would be generated, no
matter how intense the light was.

This result was in conflict with the wave theory of light. If some amount of energy was required to
eject these electrons from the metal, then increasing the intensity should be enough: there should
be no dependence on the wavelength.

These experiments hinted that light was acting like a particle, with an energy related to its frequency,
and that each atom was ‘holding onto’ its electrons with a particular amount of energy. The
incoming photon had to have enough energy to break the electron free and if it didn’t, no electron
would be released, no matter how intense the light.

Here’s an actual experimental result from 1916
where metallic sodium was exposed to light of var-
ious frequencies (or wavelengths, since f = c/λ).
Below a certain frequency (corresponding to a
wavelength of 683 nm, or red) no current was cre-
ated, but as the frequency increased (i.e. as the
wavelength got shorter, moving through orange,
green, blue, etc), electrons were being released
with higher and higher kinetic energies.

The model here is that the incoming photon has some amount of energy Eγ which goes first into
breaking the electron free of the metal (called the ‘work function’ of the metal) and then whatever
was left would go into the kinetic energy K of the freed electron: Eγ = W +K



Let’s look at experiments like this in more detail.

In the ‘circuit’ shown, there is no complete path for elec-
trons to flow (note the gap in the photocell) but light
appeared to cause electrons to be ejected from the metal
plate on the right, which were then attracted to the plate
on the left (at the higher voltage due to the battery), re-
sulting in a current flow.

Here’s a better figure illustrating what’s going on.
Photons strike the plate labelled E, causing elec-
trons to be released with some kinetic energy K.
If no external voltage is provided, some fraction
of these electrons will reach the plate labelled C,
resulting in a low current. If we apply a voltage
such that plate C has a positive voltage, more and
more of the electrons will be attracted towards it.
If the positive voltage is high enough, essentially
ALL the electronc released by E will arrive at C
resulting in a maximum amount of current flow-
ing. If instead we apply a slight negative voltage
to C, electrons will tend to be repelled by it, BUT
if their kinetic energy is high enough, some will
still make it there, resulting in a small current.

Once the voltage reaches a certain value though, the electrical potential energy barrier between
E and C is too high and NO current will flow. At that point, the kinetic energy of the released
electrons must be an exact match for the U = eVo electric potential energy barrier.

By adjusting the voltage carefully and looking at the resulting graph of current vs applied voltage,
the exact kinetic energy of the released electrons can be determined: K = eVs. (The subscript s
here refers to the ‘stopping potential’ : the voltage that ‘stops’ the current from flowing.)

The experiments indicated that the photon is car-
rying some amount of energy Eγ = hf (using
Planck’s idea of photons) that depends on the fre-
quency. When a photon strikes an atom, some of
that energy is ‘used up’ is separating the electron
from the atom (the ‘work function’ for that mate-
rial), and the rest goes into the kinetic energy of
the electron:
Eγ = hf = W +K and with K = eVs.
We can rewrite this then as hf = W + eVs or
rearranging: Vs = (h

e
)f − (1

e
)W



This experiment was done with many different elements, mostly in metallic forms, and all had the
exact same slope h/e, but each element had a different ‘work function’ : i.e. each element seemed
to ‘hold onto’ its easiest-to-free-up electron by different amount of energy.

We can relate the threshhold frequency (the frequency below which NO current will be created)
and wavelength to the work function. No electron will be released until the photon energy E = hf
exceeds the work function, so we need hf > W and f = c/λ so we can write this also as hc

λ
> W

or rearranging: λ < hc/W .

For potassium, the work function is about 2.30 eV , corresponding to a wavelength of 539 nm
(green). That color and any shorter wavelengths (blue, violet, etc) will have enough energy to kick
electrons free.

For berylium, the work function is higher, at about 5.0 eV which means it will require more
energetic photons (higher frequencies, and thus shorter wavelengths). For this element, the photons
have to have wavelengths shorter than about 250 nm, which is in the ultraviolet range and not
visible.

The element with the lowest (smallest) work function I could find is cesium with W = 2.1 eV ,
corresponding to a photon with a wavelength of 590 nm or lower (the yellow/orange boundary).

ADDENDUM : in PH2223 we looked at cathode ray tubes (CRT’s). The emitter (the cathode)
is made of a metal oxide with a low ‘work function’ so that heat alone is enough to cause it to emit
electrons. In section 37-11 it’s noted that the average kinetic energy of individual atoms or molecules
is given by K = 3

2
kT where T is the temperature in degrees K (Kelvin), and k = 1.38× 10−23 J/K

(called the Boltzmann constant) and again the symbol K in the units there is also ‘degrees Kelvin’.
A common cathode might emit electrons at a temperature of 1000o F or about 600o C, which
would be 600 + 273 = 873o K, so at that temperature the atom would have a kinetic energy of
K = (1.5)(1.38 × 10−23)(873) = 1.8 × 10−20 J . Converting, that’s only about 0.1 eV , so these
cathode materials hold onto their outermost electrons very weakly.



Rutherford Experiment (section 37-02)

Back in the late 1890’s (before we understood really what an atom was), a beam of alpha particles
(generated via the radioactive decay of uranium) was passed through a thin gold foil. The vast
majority of the alpha particles went straight through, but occasionally one would be deflected, in
some cases nearly bouncing straight back off the foil. One comment often associated with this
experiment is that it was like firing a cannon ball at tissue paper and occasionally having it bounce
back.

To explain the experiment, Rutherford proposed that atoms consisted mostly of empty space with
most of the mass concentrated in a very small ‘nucleus’:

Even if the thin layer of foil consisted of many layers of gold atoms, most alpha particles would
pass straight through, never coming close enough to any nuclei to be deflected, implying that the
positively charged nucleus must be VERY much smaller than the overall atom, as shown in the
figure on the right above.



Classical (Bohr) Model of the Atom (bits of 37-11)

The usual high school model of the atom has a nucleus
with some number (Z) of protons (and some number N
of neutrons), with electrons orbiting around the nucleus
due to the electrical force attracting the protons and elec-
trons, mathematically equivalent to how planets orbit the
Sun due to gravity. Both of those are central forces that
drop off as 1/r2.
FE = kq1q2/r

2 = mar

NOTE: in what follows, we’re going to assume we have a nucleus of any atom BUT
only a SINGLE ELECTRON in orbit about that nucleus. So this model applies to
hydrogen, singly-ionized helium, double-ionized lithium, and so on.

The nucleus has a charge of q1 = Ze and the electron has a charge of q2 = −e leading to a radially
inward force. Setting our radial direction to be positive inward, we have FE = 1

4πϵo
Ze2/r2 = mv2/r

where m is the mass of the electron.

If this electron is orbiting at a radius r from the nucleus,
it will have a kinetic energy of K = 1

2
mv2 but we can use

the previous equation (which also involves mv2 on the

RHS) to find that: K = 1
8πϵo

Ze2/r .

There is also electrical potential energy here: UE =

kq1q2/r which here will be UE = − 1
4πϵo

Ze2/r .

NOTE that this is exactly twice the kinetic energy and
the opposite sign, which means that the total mechanical

energy of the electron will be: E = − 1
8πϵo

Ze2

r
.

This begins to explain the photoelectric effect since the electron is ‘bound’ to the proton by this
amount of energy: we’ll need to provide at least this much energy before we can eject the electron
and start to see current flowing, but why the very specific energy (voltage) that we needed?

It also begins to explain spectra since an electron moving from a given radius to one closer to the
nucleus represents a decrease in it’s energy, which can be accounted for by a photon being emitted.
But again, r could be anything, so why do we only see very specific energies (wavelengths) being
emitted?

Based on the actual wavelengths emitted by hydrogen, Bohr concluded that we could reproduce
everything perfectly if we assumed that the angular momentum of the electron was quantized:
that is, it can only take on specific values that were integer multiples of the same h parameter
(divided by 2π) that Planck had introduced.

Recall that angular momentum is the rotational variant of linear momentum (p = mv): L = Iω.
For a point mass, I = mr2, so L = (mr2)ω = mr2 v

r
= mvr.

Bohr’s quantum condition then was that the electron could only take on values of L such that
L = n h

2π
which implies that

L = mvr = n h
2π

= nℏ where ℏ = h/(2π) is often used.



Quantized Angular Momenta : Impact on Real World Scales

Consider a spinning golf-ball. In class, I spun
a golf-ball so that it was rotating at about f =
2 Hz. What angular momentum does that repre-
sent? How many h/(2π) units is it? As the golf
ball slows down, it has to jump from one L to
the next ‘allowed’ value for L. Can we ‘see’ this
happening?

• L = Iω

• For a solid sphere I = 2
5
MR2

• Golf-ball parameters: M = 46 grams = 0.046 kg, R = 2.134 cm = 0.02134 m

• I = 2
5
(0.046 kg)(0.02134 m)2 = 8.4× 10−6 kg m2

• ω = 2πf = 2π(2 Hz) = 12.6 s−1

• L = Iω ≈ 1× 10−4 kg m2 s−1

According to Bohr, angular momenta will be multiple of h/(2π) which is (6.626×10−34 J s)/(2π) =
1.055× 10−34 J s.

If the golf ball’s angular momentum is L = n h
2π

what is n?

n = (1× 10−4)/(1.055× 10−34) = 9.5× 1029.

What does this imply? As the golf ball slows down and comes to a stop, it has to ‘jump’ from one
allowed angular momentum value to the next, but it does so in nearly 1030 steps, so it appears to
be continuous to us (and to any way we have of measuring it).

These ‘quantized’ angular momenta play a huge role down at the atomic and molecular level, but
are invisible to us up here at the macro scale.



Getting back to where we were, Bohr found that the angular momenta of the electrons in the various
(allowed) orbits in the Hydrogen atom were such that L = mvr = n h

2π
.

We started with Newton’s Law applied to the electrical force between the electron and the nucleus:

F = ma or k (Ze)(e)
r2

= mv2

r

Cancelling one of the r’s and rearranging: r = kZe2

mv2
(a)

The angular momentum must be mvr = n h
2π

which we can rearrange into: v = nh
2πmr

. (b)

Replacing v in equation (a) using this expression and rearranging to solve for r, we arrive finally
at:

rn = n2h2ϵo
πmZe2

or simply rn = n2

Z
r1 where r1 =

h2ϵo
πme2

, called the Bohr radius.

For the hydrogen atom, this is r1 = 0.529× 10−10 m
and represents the closest orbit the electron is allowed
to be in around the proton, and since the total energy
of the electron varies as −1/r, it represents the lowest
possible energy state for the electron.
The next allowed orbit (n = 2) will be r2 = (2)2r1 = 4r1
and so on.
Now that we know the specific orbits the electron must
occupy, we can find the specific energies it can take on:

En = −(Z
2e4m
8ϵ2oh

2 )
1
n2 , and with judicious units conversions we can write this as:

En = −(13.6 eV )Z
2

n2 (Reminder: the nucleus has Z protons, but this model assumes

there’s only a SINGLE electron orbiting this nucleus. This equation does not apply to
atoms with more than one electron present.)

This now explains why hydrogen (and other
atoms) only have specific ‘lines’ in their spectra.
The electrons can only move from one orbit
to another, and those represent very spe-
cific changes in energy, so very specific wave-
lengths of light emitted (or absorbed so this also
explains the absorption spectra of elements also).



These transitions can occur between any pairs of orbits though, each one representing the emission
or absorption of a photon.

Here we see the full series of transitions in a hydrogen atom.

• The Lyman series (electron dropping to n = 1 from some higher orbit) represents energy
changes from 13.6 eV to 10.2 eV and using E = (1240 eV nm)/λ this implies light wavelengths
between 91 nm and 121 nm, meaning they’re in the ultraviolet (not visible) range.

• The Balmer series (electron dropping from some higher orbit to n = 2) involves ∆E between
3.4 eV and 1.9 eV corresponding to wavelengths between 365 nm and 653 nm and most of
those transitions create light in the visible range.

• The Paschen series represents ∆E between 1.5 eV and 0.65 eV , corresponding to wave-
lengths between 827 nm and 1908 nm, which are in the infrared range.

It’s worth noting that it’s the UV photons from the Sun (and tanning beds) that can cause damage
to our skin and retinas, due to their much higher energies.



Light-emitting Diodes : lab this week

A diode is a particular type of electronic circuit element that we usually don’t cover and won’t
do so here (they’re usually used to limit currents to only flowing one direction, preventing any
current from flowing in the opposite direction). Some of these will emit light once a certain voltage
is reached. Basically the voltage is creating a strong enough electric field to strip electrons from
some of the atoms in the device, and when those electrons are re-captured, they emit this energy
as photons. The LED’s you’ll be (virtually) using emit photons that represent visible light.

For a given LED, nothing happens until the voltage reaches some critical level though. At that
point, the electron has acquired an energy of E = (q)(V ) = (e)(V ), which must be enough to pull
the electron from the atom. The electron in the atom has a certain (negative) total mechanical
energy, so nothing will happen (no light will be emitted) until our supplied energy (eV) is just
enough to allow the electron to escape. At which point it gets recaptured and releases that energy
as light.

At that exact threshhold then, the energy we provided (eV ) is exactly the energy in the light (hf)
so:

eV = hf = hc/λ.

This gives us a way to experimentally determine the value of h: we apply a voltage and gradually
increase it until the LED suddenly starts emitting light. The LED’s in the lab are labelled as to
their specific wavelength, so we can use (e)(V ) = hc/λ (with the critical voltage V we just found)
to determine h.

In practice this is a bit difficult since the LED at the critical voltage will only be emitting a little
light and we might not be able to see it easily.

Another potential path is available though (which unfor-
tunately we don’t do in the lab). As we increase the
voltage this higher energy is enough to free up more and
more electrons (i.e. a higher current flowing), so another
way of doing this is to graph the current flowing in the
circuit vs the voltage applied. We end up with a graph
like the one at the right and we can fit a line to our data
and project backward to determine the voltage at which
the current would just start flowing - that is the thresh-
hold voltage we’re looking for and we can use that value
in the (e)(V ) = hc/λ equation to again determine h.

The LED is putting out visible light, which means the voltage where light starts to be emitted will
only be a couple of volts as we found earlier.

(It’s a little troublesome that our nice linear V = IR relationship from PH2223 is failing here, but
we can thank quantum mechanics for that...)


