
Physics 2233 : Chapter 37 Examples : Early Atomic Theory

Blackbody radiation

• Photon energy: E = hf = hc/λ

• Shortcut: E = (1240 eV nm)/λ with λ in nm and E in eV

• Planck’s constant: h = 6.6261× 10−34 J s

• Reduced Planck’s constant: ℏ = h/(2π) = 1.055× 10−34 J s

• Intensity spectrum: I(λ, T ) = 2πhc2λ−5

ehc/(λkT )−1

Photoelectric effect

• work function Wo is how much energy is
needed to remove outermost electron from
the atom

• CoE: Eγ = Wo +K where K is the kinetic
energy of the ejected electron

• Vs is the ‘stopping voltage’ : the voltage
needed to ‘stop’ the electron, so eVs = K

• Results in: hf = Wo + eVs or Vs = (h
e
)f −

(1
e
)Wo

• Typical Wo for most materials: couple of eV

Bohr Model of the Atom

• single electron with q = −1e ‘orbiting’ dense
nucleus with q = +Ze

• electron angular momentum quantized:
mvr = nh/(2π) = nℏ

• ‘allowed’ orbits: rn = n2h2ϵo
πmZe2

= n2

Z
r1 where

r1 =
h2ϵo
πme2

(called the Bohr radius)

• r1 for hydroden is 0.529 × 10−10 m =
0.0529 nm

• hydrogen electron energy levels: En =
−(Z

2e4m
8ϵ2oh

2 )
1
n2 = −(13.6 eV )Z

2

n2



Example: photon energy (1)

What is the energy range (in joules and eV) of photons in the visible spectrum (i.e. between
wavelengths of 390 nm and 750 nm?

E = hc/λ so:

• Violet: λ = 390 nm so E = hc/λ = (6.63×10−34 J s)(3×108 m/s)
390×10−9 m

= 5.1 × 10−19 J Converting to

electron volts: E = (5.1× 10−19 J)× 1 eV
1.602×10−19 J

= 3.18 eV .

• Red: λ = 750 nm so E = hc/λ = (6.63×10−34 J s)(3×108 m/s)
750×10−9 m

= 2.652 × 10−19 J Converting to

electron volts: E = (2.652× 10−19 J)× 1 eV
1.602×10−19 J

= 1.655 eV .

Shortcut: with λ in nm and E in eV : E = (1240 eV nm)/λ so:

• Violet: λ = 390 nm so E = (1240 eV nm)/(390 nm) = 3.18 eV

• Red: λ = 750 nm so E = (1240 eV nm)/(750 nm) = 1.653 eV

(Same result to 3 significant figures anyway. The actual factor is about 1239.84 eV nm and not
just 1240 so that explains part of the slight mismatch.)

• Each photon of visible light then carries energy between 1.65 eV and 3.18 eV .

• X-ray photons carry energies roughly between 100 eV and 100 keV

• Gamma rays carry energies into the MeV range and beyond

Example: photon energy (2)

What wavelength photon would have the same energy as a 145 gram baseball moving at 27.0 m/s?

Baseball: K = 1
2
mv2 = (0.5)(0.145 kg)(27 m/s)2 = 52.8525 J

E = hf = hc/λ so λ = (hc)/E = (6.6261×10−34 J s)(3×108 m/s)
52.8525 J

= 3.76× 10−27 m

Pretty unrealistic. Converting the energy to electron volts: E = (52.8525 J) × 1 eV
1.602×10−19 J

=
3.3×1020 eV . The highest energy gamma ray ever detected (so far) had an energy of about 20 TeV
(tera-electron-volts) which is 20× 1012 eV , so the baseball has an energy about 16.5 million times
larger.



Example: Photo-electric Effect (1)

In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is
less than 540 nm. (a) What is the work function of this material? (b) What is the stopping voltage
required if light of wavelength 480 nm is used?

(a) No current flows until the photon energy is just enough to break an electron free from the
material, that energy being called the ‘work function’ for the material. Here that occurs at λ =
540 nm which represents an energy of E = hc/λ = (1240 eV nm)/(540 nm) = 2.296 eV , so
Wo = 2.296 eV .

(b) The stopping voltage is related to the frequency of the light and the work function: Vs =
(h
e
)f − 1

e
Wo. We could do this ‘directly’ (converting the Wo we found into joules first, converting

the new wavelength into f , and so on), but let’s think about this.

The incoming photon energy Eγ gets converted into the work function of the material plus the
kinetic energy of the electron: Eγ = Wo +K.

The 480 nm photon has an energy of E = (1240 eV nm)/(480 nm) = 2.5833 eV . When it strikes
the material, the first 2.296 eV (the ‘work function’ for the material) is being ‘used up’ just to break
the electron free from the material, leaving 2.5833 − 2.296 = 0.2873 eV as the kinetic energy of
the electron. The stopping voltage represents the electric potential energy U = (e)(Vs) being just
enough to cancel out the kinetic energy of the electron before it can turn into current in the circuit
so here Vs must be 0.2873 volts.

Example: Photo-electric Effect (2)

What is the maximum kinetic energy of electrons ejected from barium (Wo = 2.48 eV ) when
illuminated by white light with wavelengths running from λ = 410 nm to λ = 700 nm?

The photons of light carry energy of Eγ = hf = hc/λ and when a photon strikes the barium, the
first 2.48 eV goes into breaking the electron free from a barium atom, with the remaining energy
going into the kinetic energy of the electron: Eγ = Wo +K.

Note that E ∝ 1/λ so the photon with the smallest wavelength will have the most incoming energy
and (once we subtract the work function from that) will yield the highest kinetic energy.

At the 410 nm end of the range, E = (1240 eV nm)/(410 nm) = 3.024 eV . The first 2.48 eV is
‘used up’ by the work function, leaving K = 3.024 − 2.48 = 0.5444 eV as the maximum kinetic
energy an electron will have.

At the 700 nm end of the range, the photons have E = (1240 eV nm)/(700 nm) = 1.77 eV which
isn’t enough to release an electron. Those photons will just be absorbed or reflected.

What wavelength of light in the provided range will be the first to actually cause an electron to be
released? That will occur when the photon energy is just enough to overcome the work function:
E = 2.48 eV = (1240 eV nm)/λ yielding λ = 500 nm.

Thus only photons in the range from 410 nm to 500 nm will cause electrons to be released. The
rest, from 500 nm to 700 nm will just be absorbed or reflected by the material.



Example: Bohr Model (1)

How much energy is needed to ionize a hydrogen atom in the n = 3 state?

An atom with Z protons but just ONE electron in orbit has energy levels of En = −(13.6 eV )Z
2

n2

Here we’re dealing with hydrogen, so Z = 1 and the electron is apparently in the third possible

orbit so n = 3 and E3 = −(13.6 eV ) (1)
2

(3)2
= −1.511 eV . A photon will need to add 1.511 eV to

break the electron from this orbit, leaving an ionized hydrogen atom (a naked proton) behind. This
represents a wavelength of E = (1240 eV nm)/λ so λ = (1240 eV nm)/(1.511 eV ) = 820.6 nm
which would be in the infrared range. (We didn’t cover this, but heating the hydrogen up sufficiently
can also provide enough energy to release the electron. We could also fire a beam of electrons at the
hydrogen and hope for a collision to occur that might transfer enough energy to break the electron
free. Basically anything that could somehow transfer that much energy to the orbiting electron
could do it.)

Example: Bohr Model (2)

(a) Determine the wavelength of the second
Balmer line (n = 4 to n = 2 transition). (b) De-
termine the wavelength of the third Lyman line
(n = 4 to n = 1 transition).

From the figure, E1 = −13.6 eV , E2 = −3.40 eV ,
E3 = −1.51 eV and E4 = −0.85 eV .

(a) Here the electron is moving from an orbit where E = −0.85 eV to one where E = −3.40 eV ,
so the electron energy is changing by: ∆E = Efinal − Einitial = (−3.40 eV ) − (−0.85 eV ) =
−2.55 eV . It does so by releasing a photon with E = +2.55 eV . E = (1240 eV nm)/λ so
λ = (1240 eV nm)/(2.55 eV ) = 486 nm (blue-green).

(b) Here the electron is moving from an orbit where E = −0.85 eV to one where E = −13.6 eV ,
so the electron energy is changing by: ∆E = Efinal − Einitial = (−13.6 eV ) − (−0.85 eV ) =
−12.75 eV . It does so by releasing a photon with E = +12.75 eV . E = (1240 eV nm)/λ so
λ = (1240 eV nm)/(12.755 eV ) = 97.25 nm (ultraviolet; not visible).


