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Photon momentum, Radiation pressure, Matter Waves

37.4 : Photon Momentum
Interestingly, EM waves (photons) also carry mo-
mentum. In a 1923 experiment, Arthur Comp-
ton shot X-rays at various materials. The X-rays
carry enough energy to ignore any electron bind-
ing energy and basically scatter off the electrons,
sending them in one direction and a (reduced en-
ergy) photon in another. By analyzing the energy
and directions, he found that for momentum to
be conserved, photons needed to carry not only
an energy of E = hf = hc/λ but also a momen-
tum of p = E/c = hf/c = h/λ, even though
they have no mass.

Example : suppose we have a 1
1H hydrogen atom with its lone electron in the n = 3 orbit. The

electron drops back down to the n = 1 orbit, releasing a photon that carries off some energy (and
some momentum). The atom will need to recoil as a result in order to conserve momentum. But
in doing so, it also now has some K = 1

2
mv2 of energy: energy we assumed was all going into the

photon. Let’s see if this messes anything up.

We found earlier that the energy levels will be En = −(13.60569 eV )Z
2

n2 (as long as we only have a
single electron in an atom), and here we have hydrogen with Z = 1, so: En = −(13.60569 eV )/n2.

In the n = 3 orbit, the electron has E3 = −13.60569/9 = −1.51219 eV of energy, but when it drops
down to the n− 1 orbit, it has E1 = −13.60569 eV . The atom has lost 12.0975 eV of energy, which
is carried off by the photon.

(The photon will have a wavelength of λ = (1239.84 eV nm)/(12.0975 eV ) = 102.5 nm, which is
in the ultraviolet part of the spectrum and not visible.)

The photon will have a momentum of p = E/c with E = (12.0975 eV ) × 1.602×10−19 J)
1 eV

= 1.938 ×
10−18 J and then p = E/c = 6.46× 10−27 kg m/s.

The hydrogen atom will then recoil with the same momentum in order to conserve momentum.
The atom’s momentum will be p = mv so we’ll need the mass of a single hydrogen atom.

From the table of isotopes, the 1
2H isotope of hydrogen has an atomic mass of 1.007825 u so

converting: m = (1.007825 u)× 1.6605×10−27 kg
1 u

= 1.6735× 10−27 kg.

Finally, v = p/m = (6.46× 10−27 kg m/s)/(1.6735× 10−27 kg) = 3.86 m/s.

And what kinetic energy would the hydrogen atom have?
K = 1

2
mv2 = (0.5)(1.6735×10−27 kg)(3.86 m/s)2 = 1.25×10−26 J which is about 7.9×10−8 eV .

We assumed the photon carried off 12.0975 eV of energy but actually it will be this tiny amount
less: a number small enough we can ignore this effect entirely (whew).



31.9 : Radiation Pressure

The fact that photons carry momentum also means that momentum has to be transferred when a
photon is absorbed (or reflected) by a material. This interaction implies a force is present
on the object.

A given intensity of light (or other EM waves) represents some (large) number of photons, each
carrying some momentum. If these waves (photons) are absorbed by (or reflected from) some object,
a momentum transfer will occur and we can relate the intensity directly to a force (more specifically
a pressure) acting on the object.

Intensity (I) is energy per area, per time. At the Earth’s distance from the Sun, the intensity of
sunlight is about I = 1350 W/m2 meaning that 1350 J of energy fall in each square meter, each
second. Multiplying the intensity by the area ∆S of our solar panels gives the total joules we’re
capturing each second (i.e. the watts of power the solar panels are generating). Further multiplying
by a time interval ∆t would yield the total amount of energy in Joules that we’ve collected over
that time interval.

Derivation of radiation pressure:

• If we have an intensity I of light (any EM wave will do here though), then the total energy
falling on an area ∆S in a time interval ∆t will be E = (I)(∆S)(∆t).

• How many photons does this imply? Each photon has an energy of E = hf so:

• Number of photons falling on our area ∆S during the time interval ∆t : I∆S∆t
hf

• Each of those photons is carrying a momentum of hf/c, so how much momentum did all
those photons transfer to our object?

• Momentum transferred: ( I∆S∆t
hf

)× (hf
c
) = I∆S∆t

c

• FORCE is ∆p/∆t so the FORCE being applied to the target is F = I∆S
c

• PRESSURE is force per area, so ultimately the PRESSURE this light (EM wave) represents
is P = I/c.

If these waves are totally REFLECTED by the target, the momentum transfer will be twice that.

• P = F
A
= I

c
if the waves (photons) are absorbed

• P = F
A
= 2 I

c
if the waves (photons) are reflected

This radiation pressure has been used by actual space probes on purpose a few times, but it’s
there whether we want it to be or not. (See: Japan’s 2010 IKAROS probe to Venus, NASA’s
2010 NANOSEL-D2 mission, and the 2019 Planetary Society LightSail-2.)



Example: pressure on us due to room lights

In a typical well-lit room, the light intensity will be about 200 W/m2. Compare the radiation
pressure the lights are exerting on us to the usual atmospheric pressure we’re already feeling:
1 ATM = 14.7 lb/in2 = 101325 N/m2. Can we ‘feel’ the additional pressure that will be present
when the lights are on?

We have the intensity in standard metric units, so no conversions needed here.

If we completely absorbed all the photons: P = I/c = (200)/(3 × 108) = (6.7 × 10−7 N/m2) ×
1 ATM

101325 N/m2 = 6.6× 10−12 ATM

If we’re covered in shiny foil and reflect all of them: P = 2I/c = (2)(200)/(3 × 108) = (13.3 ×
10−7 N/m2)× 1 ATM

101325 N/m2 = 13.2× 10−12 ATM .

We absorb some and reflect others, so we’ll be somewhere in between those numbers, but either
way it’s completely imperceptible.

Example: highest energy gamma ray detected

As of now, the highest energy single photon ever detected had an energy of 20 TeV . That’s tera-
electron volts, or 20× 1012 eV or (20× 1012 eV )× 1.602×10−19 J

1 eV
= 3.204× 10−6 J .

• Wavelength: E = hf = hc
λ
so λ = hc

E
= (6.62×10−34)(3×108)

3.204×10−6 = 6.2× 10−20 m

• Momentum: p = E/c = h/λ = 6.62×10−34

6.2×10−20 = 1.07× 10−14 kg m/s

For comparison, a tiny piece of dust floating in the air might have a mass on the order of m ≈
8 × 10−10 kg so how fast would that dust have to be moving to have the same momentum as this
record-making photon? p = mv so v = p/m = (1.07× 10−14)/(8× 10−10) = 1.3× 10−5 m/s (about
0.01 mm/s).

You wouldn’t ‘feel’ that photon hitting you, but it would certainly leave quite a trail of destruction
behind. Basically every atom (and even every nucleus) that it encounters would be split apart.
Still, it’s an infinitesimal fraction of the molecules in our bodies, so ‘probably’ nothing bad would
happen.

Computers are a different story since high energy gamma and other cosmic rays can flip bits in
computer memories and disks (or SSD’s). One article claimed that for every gigabyte of RAM
(memory) in your computer, about one bit per week will have its value flipped. Mission-critical
computers need to allow for this (error-correcting memory is one option; doing every calculation in
parallel twice or more is another).

See: https://bigthink.com/hard-science/cosmic-rays-computer-crash/

 https://bigthink.com/hard-science/cosmic-rays-computer-crash/ 


Impact on International Space Station

At the Earth’s distance from the Sun, we have
an intensity of I = 1350 W/m2 so if this light is
absorbed by something it falls on, the resulting
pressure will be:

P = 1350
3×108

= 4.5× 10−6 N/m2

If the light is reflected by that object, the pressure
will be twice that.

That doesn’t sound like much, but the ISS
presents a very large cross section to the Sun, with

the solar panels alone totalling 3500 m2 which
means the Sun is exerting a force on it of just
under 0.02 N . Given the mass of the ISS, that
doesn’t sound like much, but over long periods of
time it’s enough to require small course correction
thrusters to be used to compensate.

The ISS has a mass of about 450, 000 kg so
from F = ma this would represent an acceler-
ation of a = F/m = (0.02 N)/(450, 000 kg) =
4.4× 10−8 m/s2.

The ISS is obviously going around the Earth in
a circular-ish orbit, but what distance would this
tiny acceleration add up to in a single day?
s = 1

2
at2 and we have (24 hours) ×

(3600 sec/hour) = 86, 400 s in a day, resulting
in s = 164 meters .

As the ISS orbits the Earth, the solar panels
(usually) rotate to face the Sun so the force is
constantly changing direction (and obviously this
force will be gone when the Earth blocks the sun-
light). It’s also being affected by the rarified rem-
nants of the atmosphere at that altitude, and as
it swings around the Earth this force is pushing
the ISS in different directions, but at the end of
the day, radiation pressure can easily alter the lo-
cation of the ISS by meters relative to where it’s
supposed to be, requiring regular small thrusters
to fire to compensate.



Crazy(?) Idea

Recently, it has been proposed (Project Breakthrough-
Starshot) that we launch thousands of tiny satellites with
large reflective ‘solar sails’ and then fire a powerful laser
at them to accelerate them to a significant fraction of the
speed of light so they could reach a nearby star such as
α Centauri in our lifetimes.

The ‘light’ would be produced via several powerful lasers
orbiting the Earth and capable of putting out about
100 GW of power.

Such lasers could be turned towards Earth and vaporize
cities, which has caused some ‘concern’ so this project as
proposed seems unlikely, to say the least!
Placing the lasers on the ground solves one problem but
creates another: firing light that intense up through the
atmosphere could ionize the air and lose quite a bit of its
intensity. (Presumably planes and birds wouldn’t try to
fly through the intense beams!)

For additional information, see the Wikipedia article on Solar Sails.

Idea: each probe would have a mass of ‘a few grams’ and the lasers would accelerate each to
0.15 c in 10 minutes, implying an acceleration of a = 100 km/s2 (note that’s km, not m) or about
a ≈ 10, 000 g′s. Each probe’s ‘sail’ would be a disk about 5 m across. Are these values consistent
with what we know about radiation pressure now? (If you use m = 3 grams, the numbers do
appear consistent.)



PH2233 : Chapter 37-7 : Matter Waves

In chapter 31 and the other bits of chapter 37 we did, we saw where photons carried energy of
E = hf = hc/λ, but oddly they also carry momentum even though they are massless.

We’re used to energy appearing in many forms, and apparently momentum can as well.

In the case of photons, their momentum is p = E/c = hf/c = h/λ and we discussed this in the
context of radiation pressure in chapter 31.

It had been observed that beams of electrons (known to be particles of matter) falling on materials
with a regular crystal pattern can yield the same sort of intensity patterns as light passing through
a diffraction grating does. In Quantum Mechanics, even matter can have wave-like properties, with

a wavelength of λ = h/p where now p = mv is the normal form of momentum.

Electron Diffraction

In ‘electron diffraction’, beams of electrons falling on a thin film of material will ‘reflect’ off the
atoms (separated by about 0.2 nm). If this were light, reflecting off tiny reflective surfaces (like a
CDROM), we’d treat this as a diffraction-grating type problem, and would find that constructive
and destructive interference would be happening with the light at various different wavelengths,
creating the rainbow patterns we see.

If the electrons just behaved like normal matter, they should
bounce off the atoms in random directions and create a blur of
electrons reflecting back in all directions. That is not what we
see, though.
With tiny particles of matter, like electrons, we actually see the
same diffraction phenomenon occurring, with the electrons be-

having like waves with a wavelength of λ = h/p (called the de

Broglie wavelength) where p = mv is the momentum of the
electron.
If we accelerate electrons across a 100 V potential, at what angles
will we see strong reflections?

First, we’ll need the momentum of the electrons. They’ll have an energy of 100 eV after crossing
this potential difference, representing an energy in joules of: E = (100 eV )× 1.609×10−19 J

1 eV
= 1.609×

10−17 J .

That represents a kinetic energy of K = 1
2
mv2 = 1.609 × 10−17 J and using the electron mass of

m = 9.11× 10−31 kg we find v = 5.943× 106 m/s (which is far enough below the speed of light we
can ignore relativity...).

The wavelength of this electron then will be λ = h/p = h/(mv) = 6.63×10−34

(9.11×10−31)(5.943×106)
= 1.22 ×

10−10 m or about λ = 0.122 nm .

The wavelength is just a bit smaller than the spacing between the reflection points (basically the
diameter of the atoms in the material) and we’ll have constructive interference where d sin θ = mλ
so here sin θ = mλ/d = (m)(0.122 nm)/(0.2 nm) = (m)(0.61).

m = 0 yields a solution, so some of the electrons will be reflected straight back. There are other
solutions though, at m = ±1, which yield solutions of θ = ±37.6o. We will also get a strong signal
of electrons reflecting at these angles.



Instead of just randomly scattering off the atoms as particles would do, the electrons instead are
behaving like waves with a wavelength here of 0.122 nm scattering off the atoms and interfering.

Here are a couple of random pictures from actual electron diffraction studies. The resulting inter-
ference patterns ultimately reveal details about how the atoms are arranged in the material.

Finally the classic double slit experiment has been done
with electrons as well, and the resulting interference pat-
tern again confirms that they’re behaving more like waves
than particles.

Baseball Diffraction

(a) What would the de Broglie wavelength of a 90 mph baseball be?

v = 90miles
hr

× 1609 m
1 mile

× 1 hr
3600 s

= 40.225 m/s.

Baseball mass is about 145 grams, or m = 0.145 kg.

Momentum: p = mv = (0.145 kg)(40.225 m/s) = 5.93 kg m/s.

Wavelength: λ = h
p
= 6.63×10−34

5.93
= 1.12× 10−34 m.

That’s many orders of magnitude smaller than even the size of a single proton, so we don’t realis-
tically expect to see any quantum effects on the flight of this baseball.

(b) If this baseball passes through a circular hole 10 cm across, what angular spread will this
introduce?

Recall from the resolution material we covered in chapter 35 that a wave passing through a circular
aperture gets spread out by an angle of θ = 1.22λ/D. Our baseball was initially travelling in a
straight line but after passing through this aperture, it’s wave nature has introduced an uncertainty
in it’s direction of θ = (1.22)(1.12× 10−34 m)/(0.1 m) = 1.4× 10−33 radian or about 8× 10−32 deg.

If we threw the ball repeatedly and perfectly, the position where it hits the wall will technically
vary by this amount. For example, 10 meters after passing through the hole, its position would be
spread out (from s = rθ) by about 1.4× 10−32 meters which is vastly smaller than the diameter of
even a single proton.

Clearly nothing we’ll notice up at OUR scale, but the nanotechnology field is encroaching on this
quantum realm where oddball effects like this can’t be ignored.


