Light reflection and refraction

• Spherical Mirror : $f = \frac{1}{2}R$ (Concave mirror R > 0 ; convex R < 0)

• Mirror Equation : $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$ Variants: $f = \frac{d_o d_i}{d_o + d_i}$ $d_o = \frac{d_i f}{d_i - f}$ $d_i = \frac{d_o f}{d_o - f}$

• Magnification : $m = h_i/h_o = -d_i/d_o$

Snell's Law

• general : $\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$

• EM waves : $n \equiv c/v$ so $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Total Internal Reflection (ray moving from higher n to lower n) $\sin \theta_c = n_{lower}/n_{higher}$

Indices of Refraction	
Material	n = c/v
Vacuum	1.0000
Air (STP)	1.0003
Water	1.33
Ethyl alcohol	1.36
Glass (fused quartz)	1.46
Glass (crown glass)	1.52
Glass (light flint)	1.58
Lucite, plexiglas	1.51
Sodium chloride	1.52
Diamond	2.42

Lenses and Optical Instruments

Lens Equation $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$ Variants: $f = \frac{d_o d_i}{d_o + d_i}$ $d_o = \frac{d_i f}{d_i - f}$ $d_i = \frac{d_o f}{d_o - f}$

Magnification $m = h_i/h_o = -d_i/d_o$

Lens power (diopters) : P = 1/f (with f measured in meters)

Lensmaker's equation : lens material n surrounding material n_o

- $\bullet \quad \frac{1}{f} = \frac{n n_o}{n_o} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$
- in air ($n_o = 1.000..$) : $\frac{1}{f} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2})$

Angular size : $\theta \approx (size)/(distance)$ (from $s = r\theta$, with θ in radians)

Apparent, or angular magnification : $M = \theta_{image}/\theta_{object}$

Random bits

$$v = \lambda/T = \lambda f = \omega/k$$
 $k = 2\pi/\lambda$ $\omega = 2\pi/T$

Speed of light (in vacuum) : $3 \times 10^8 \ m/s$

Speed of sound in air (STP) : 343 m/s

Speed of sound in pure water (STP) : 1500 m/s

NOTE: you'll need to know about ray diagrams and sign rules. See book.