

Polarization by reflection $\tan \theta_p = n_b/n_a$

Outgoing light polarized at filter angle

If polarized in: $I = I_o \cos^2 \phi$ If unpolarized in: $I = \frac{1}{2}I_o$

2-source interference (general)

Path difference: Δs Constructive: $\Delta s = m\lambda$ Destructive: $\Delta s = (m + \frac{1}{2})\lambda$

2-source interference (far-field)

(far-field: R > 10d)

Constructive Interference:

 $d\sin\theta = m\lambda$ for $m = 0, \pm 1, \pm 2, ...$

Destructive Interference:

 $d \sin \theta = (m + \frac{1}{2})\lambda \text{ for } m = 0, \pm 1, \pm 2,...$

Bright fringes (small θ : $d > 10\lambda$):

 $y_m = m \frac{R\lambda}{d}$ for $m = 0, \pm 1, \pm 2, ...$

Thin film interference if NO relative phase shift

Constructive Interference: $2t = m\lambda_{film}$ for $m = \pm 1, \pm 2, ...$

Destructive Interference: $2t = (m + \frac{1}{2})\lambda_{film}$ for $m = 0, \pm 1, \pm 2, ...$

Thin film interference WITH half-cycle phase shift

Constructive Interference: $2t = (m + \frac{1}{2})\lambda_{film}$ for $m = 0, \pm 1, \pm 2, ...$

Destructive Interference: $2t = m\lambda_{film}$ for $m = \pm 1, \pm 2, ...$

HALF-CYCLE phase shift will occur for reflections

at interface where n increases.

WARN: λ_{film} is wavelength IN MEDIUM, so $\lambda_{film} = \lambda_o/n_{film}$

Diffraction: waves pass through aperture or around an edge.

- Fresnel: nearby source or observer.
- Fraunhofer (typical case): source and observer far away (relative to size of slit)

Single Slit Diffraction (far-field: R > 10D)

monochromatic waves (light, etc), slit width D

DARK fringes at: $\sin \theta = m \frac{\lambda}{D}$ for $m = \pm 1, \pm 2, ...$

Small angles: $y_m = m \frac{R\lambda}{D}$ for $m = \pm 1, \pm 2, ...$ $I(\theta) = I_o snc^2(\beta/2)$ where $snc(x) \equiv \frac{\sin x}{x}$ and $\beta = \frac{2\pi D \sin \theta}{\lambda}$ Intensity at BRIGHT fringes: $I_m \approx \frac{I_o}{(m+\frac{1}{2})^2\pi^2}$ for m = 1, 2, 3...

Diffraction Grating (far-field)

large number of parallel slits separated by d

Sharp BRIGHT fringes at: $d \sin \theta = m\lambda$ for $m = 0, \pm 1, \pm 2, ...$

Small angles: $y_m = m \frac{R\lambda}{d}$ for $m = 0, \pm 1, \pm 2, ...$

Same effect with REFLECTION grating formed from tiny thin strips of reflecting material (d now being distance between centers of reflecting strips)

Rayleigh resolution limit

single slit of width $D : \sin \theta = \lambda/D$

(Note: $\sin \theta \approx \theta$ if θ is small and in radians) circular aperture of diameter D: $\sin \theta = 1.22 \lambda/D$

Miscellaneous

Speed of sound in air: $v \approx 343 \ m/s$ Speed of sound in water: $v \approx 1500 \ m/s$

Speed of light in vacuum: $v = c = 2.998 \times 10^8 \ m/s$ $(c = 3 \times 10^8 \ m/s \text{ is good enough})$

Light year: $1 LY = 9.461 \times 10^{15} m$

Energy: $1 \ eV = 1.602 \times 10^{-19} \ J$ $K = \frac{1}{2} mv^2$

Typical indices of refraction: $n_{air} = 1.00$, $n_{water} = 1.33$, $n_{glass} = 1.5$ to 1.8

Visible light: 390 nm to 750 nm (see table below)

Audible range (humans): f = 20 Hz to f = 20,000 Hz

Nanometer: $1 nm = 10^{-9} m$ Frequency, wavelength and wave speed: $v = \lambda/T = \lambda f$.

Arc-length: $s = r\theta$ (angle in radians)

Quadratic equation: if $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Far Field: R > 10d or R > 10D with R being the distance away from the slit/aperture/grating

Small Angle : $d > 10\lambda$ or $D > 10\lambda$

(We didn't develop near-field equations for single slit or diffraction gratings, so it's OK to use the far-field equations for those.)

Light	
Wavelength λ	
(nm)	Color
< 390	(ultraviolet)
390 - 435	Violet
435 - 500	Blue
500 - 520	Cyan
520 - 565	Green
565 - 590	Yellow
590 - 625	Orange
625 - 750	Red
> 750	(infrared)

FM radio: λ around 2.78 m to 3.41 m AM radio: λ around 176 m to 555 m

Digital TV: λ around 40 cm