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Abstract

The real-time dynamics of a single spin-1/2 particle, called the central spin, coupled to the x(y)-components of the
spins of one or more baths is simulated. The bath Hamiltonians contain interactions of x(y)-components of the bath
spins only but are general otherwise. An efficient algorithm is described which allows solving the time-dependent
Schrödinger equation for the central spin, even if the x(y) baths contain hundreds of spins. The algorithm requires
storage for 2 × 2 matrices only, no matter how many spins are in the baths. We calculate the expectation value of the
central spin, as well as its von Neumann entropy S(t), the quantum purity P(t), and the off-diagonal elements of the
quantum density matrix. In the case of coupling the central spin to both x- and y- baths the relaxation of S(t) and
P(t) with time is a power law, compared to an exponential if the central spin is only coupled to an x-bath. The effect
of different initial states for the central spin and bath is studied. Comparison with more general spin baths is also
presented.
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1. Introduction

Simulating the time development of any non-relativistic quantum system involves solving the Time-Dependent
Schrödinger Equation (TDSE) [1],

H |Ψ(t)〉 = −�

i
∂

∂t
|Ψ(t)〉 , (1)

where the Hamiltonian H is assumed to be independent of time and the initial wave function |Ψ(0)〉 is given. For
example, to study the time-evolution of a model for a quantum computer the TDSE must be solved [2, 3, 4, 5,
6] for qubits, which are spin-1/2 objects. If the closed quantum system is composed of a subsystem S on which
measurements will be taken, and an environment or bath B, then the Hamiltonian can be written as

H = HS +HB +HS B, (2)

with the first term the Hamiltonian of the subsystem S , the second term the Hamiltonian of the bath B, and the third
term the Hamiltonian for the coupling between the subsystem S and the bath B. In this paper we assume that the
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subsystem S consists of a single spin-1/2 particle, also called the central spin, and that the bath B is composed of NB

spin-1/2 particles. The dimension of the Hilbert space of the bath is DB = 2NB and the dimension of the complete
Hilbert space is 2DB = 2NB+1. Thus the dimension of the vector |Ψ(t)〉 in Eq. (1) is 2NB+1. The state of the subsystem
S is described by the reduced density matrix

ρ(t) = TrB
[
ρS+B(t)

]
, (3)

where ρS+B is the density matrix of the complete NB + 1 spin system, and the trace is over the NB spins in the bath.
Thus ρ(t) is a 2 × 2 matrix. However, to calculate ρ(t) one first needs to propagate with the TDSE

|Ψ(t)〉 = exp

(
− iH t

�

)
|Ψ(0)〉 , (4)

for all NB + 1 spins, and then trace out the bath spins.
The dimension of |Ψ(t)〉 presents an enormous difficulty in computer calculations of spin systems. We need

to have NB large, but memory of computers is limited. For example, the most powerful computer on the Novem-
ber 2011 Top 500 list [7], the K computer at the RIKEN Advanced Institute for Computational Science in Japan, has
705,024 cores and has a Linpack benchmark of 10.5 Petaflop/s . Each compute node of the K computer has 16 Gbyte
of memory, so the total memory of the K computer is about 1.2×1016 bytes, which means that the number of spins for
the largest vector |Ψ(t)〉 that can be stored in the K computer is NB ≈ 50. The stated goal for exascale computing that
the memory should be a few exabytes limits the size of the vector |Ψ(t)〉 to NB ≈ 60. The number of spins that can be
included in TDSE computer calculations is small compared to the size of spin baths in laboratory experiments. For
example, recent experiments studied a single electron coupled to a bath of about 109 spins [8, 9]. There are efficient
algorithms to calculate the TDSE for any Hamiltonian for a small total number of spins, such as the efficient method
based on Chebyshev polynomials [10, 11, 12, 13, 14]. A recent paper reported the use of Chebyshev-type algorithms
to simulate the dynamics of up to 36 spin-1/2 particles to study decoherence and thermalization [15], storing the full
vectors of size 236 for the TDSE computation. Other studies have also used calculation of the TDSE to study the
decoherence of quantum spin systems coupled to spin baths [16, 17, 18, 19].

In this paper we calculate the TDSE for a central spin-1/2 coupled to different types of NB-bath spins. The paper
has two goals. One goal is to introduce an efficient algorithm that only has to store matrices of size 2×2 (rather than
vectors of size 2NB+1) to solve the TDSE for certain types of baths which we call x, y-baths. The second goal is to
examine the decoherence and thermalization effects of x, y-baths. The x- and y-baths we compute are generalizations
of baths studied analytically [20], with the quantum purity either decaying exponentially or as a power law, depending
on the bath.

2. Model and Quantities Measured

We consider a single spin-1/2 particle coupled to a quantum bath of NB spin-1/2 particles. The dimension of the
Hilbert space is 2NB+1. Let the central spin be numbered spin 0, and the bath spins 1 through NB. The Pauli spin
matrices are

sx =
�

2
σx =

�

2

(
0 1
1 0

)
, sy =

�

2
σy =

�

2

(
0 −i
i 0

)
, and sz =

�

2
σz =

�

2

(
1 0
0 −1

)
. (5)

We define spin operators which act on the Hilbert space of dimension 2NB+1

S �m = I2 ⊗ I2 ⊗ · · · ⊗ I2 ⊗ s� ⊗ I2 ⊗ · · · ⊗ I2, (6)

with I2 the 2 × 2 identity matrix and s� the 2 × 2 Pauli spin matrix (� ∈ {x, y, z}) at the mth position in the Kronecker
(direct) product of NB + 1 matrices of size 2 × 2. From now on we set � = 1.

The central spin Hamiltonian we consider is

HS = ω0S z
0, (7)
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where ω0 denotes the strength of the external magnetic field that is applied to the central spin in the z-direction.
There are four quantities of interest that we measure. For any expectation value of the central spin, Eq. (3) gives

the first class of quantities of interest, 〈
S �0(t)

〉
= Tr

[
s�ρ(t)

]
. (8)

The second quantity of interest is the quantum purity for the central spin,

P(t) = Tr
[
ρ(t)2

]
. (9)

Since ρ(t) is a 2×2 matrix we can write it as ρ(t) = aρ(t)I2 + �bρ(t) · �σ, with the vector �bρ(t) having components(
bρx(t), bρy(t), bρz(t)

)
and bρ(t) =

√
b2
ρx(t) + b2

ρy(t) + b2
ρz(t). With the identity

[
�bρ(t) · �σ

]2
= b2

ρ(t)I2, one has for the

quantum purity
P(t) = 2a2

ρ(t) + 2b2
ρ(t) . (10)

The third quantity of interest is the von Neumann entropy

S(t) = −kBTr
[
ρ(t) log2ρ(t)

]
= − kBλ+(t) log2 [λ+(t)] − kBλ−(t) log2 [λ−(t)] , (11)

where the eigenvalues of ρ(t) are λ±(t) = aρ(t) ± bρ(t). From now on we set Boltzmann’s constant kB = 1. The fourth
quantity of interest, as defined in Ref. [15], is the sum of the off-diagonal elements of ρ(t)

σ(t) =

√√√2Ns−1∑
i=1

2Ns∑
j=i+1

∣∣∣ρi j(t)
∣∣∣2 , (12)

if there were Ns spins in the subsystem. Note that σ(t) should not be confused with the Pauli matrices σ�. For general
Ns, thermalization toward a canonical distribution has the necessary condition that σ(t) becomes very small [15]. For
our single spin-1/2 system Ns = 1 so

σ(t) = |ρ12(t)| . (13)

3. Efficient Algorithm for x, y-baths

We assume that the NB x, y-bath spins include Nx x-bath spins and Ny y-bath spins with NB=Nx+Ny. The central-
spin bath interaction Hamiltonian reads

HS B = S x
0

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1∑
i1=0

1∑
i2=0

· · ·
1∑

iNx=0

Ji1,i2,···,iNx

(
S x

1

)i1 (
S x

2

)i2 · · · (S x
Nx

)iNx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+S y

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1∑
j1=0

1∑
j2=0

· · ·
1∑

jNy=0

Kj1, j2,···, jNy

(
S y

Nx+1

) j1 (
S y

Nx+2

) j2 · · ·
(
S y

Nx+Ny

) jNy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (14)

where Ji1,i2,···,iNx
denotes the coupling strength between the central spin and the Nx spins in the x-bath, while the

Kj1, j2,···, jNy
are the coupling strengths between the central spin and the Ny y-bath spins. The bath Hamiltonian is given

by

HB =

1∑
i1=0

1∑
i2=0

· · ·
1∑

iNx=0

J̃i1,i2,···,iNx

(
S x

1

)i1 (
S x

2

)i2 · · · (S x
Nx

)iNx

+

1∑
j1=0

1∑
j2=0

· · ·
1∑

jNy=0

K̃ j1, j2,···, jNy

(
S y

Nx+1

) j1 (
S y

Nx+2

) j2 · · ·
(
S y

Nx+Ny

) jNy
, (15)

where J̃i1,i2,···,iNx
denotes the coupling strength between the Nx spins in the x-bath, and similarly K̃ j1, j2,···, jNy

denotes the
coupling strength between the Ny y-bath spins. Note that the type of spin interaction (2-spin, 3-spin, · · ·) is specified
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by the number of ones in the subscript of J̃ or K̃, since it follows from Eq. (6) that
(
S x

i

)0
=
(
S y

j

)0
= IF where IF denotes

the 2NB+1×2NB+1 identity matrix. Similarly the type of spin interaction (2-spin, 3-spin, · · ·) is specified by one plus the
number of ones in the subscript of J or K. When all x-bath two-body couplings are identical, for brevity we define
these as a coupling strength J2. Similarly for the x-bath the three-body interactions J are defined as J3, the Nx-body
interactions JM (only one bath spin is not in the sum), and the (Nx + 1)-body interactions as JA. We similarly define
the coupling K2 for the y-bath when all two-body couplings are identical, K3 for all identical three-body couplings,
KM when all identical Ny-body couplings, and the (Ny + 1)-body coupling KA.

We introduce the two matrices

px =
1√
2

(
1 −1
1 1

)
and py =

1√
2

( −i i
1 1

)
, (16)

having the properties px p−1
x = I2 with p−1

x = pT
x = p†x and py p−1

y = I2 with p−1
y = p†y . The matrices px and py also

exhibit the properties
p†xsx px = sz and p†y sy py = sz . (17)

In addition

p†x

(
0
1

)
=

1√
2

(
1
1

)
and p†y

(
0
1

)
=

1√
2

(
1
1

)
. (18)

We next introduce the matrix
Pp = I2 ⊗ px ⊗ · · · ⊗ px ⊗ py ⊗ · · · ⊗ py , (19)

with position zero in the product occupied by the 2×2 identity matrix, the positions 1 through Nx in the Kronecker
product occupied by px, and the positions Nx+1 through NB = Nx+Ny by py. It follows that P†pPp = IF . We introduce
the transformed Hamiltonian

H̃ = P†pHPp

= ω0S z
0 +

1∑
i1=0

1∑
i2=0

· · ·
1∑

iNx=0

J̃i1,i2,···,iNx

(
S z

1

)i1 (
S z

2

)i2 · · · (S z
Nx

)iNx

+

1∑
j1=0

1∑
j2=0

· · ·
1∑

jNy=0

K̃ j1, j2,···, jNy

(
S z

Nx+1

) j1 (
S z

Nx+2

) j2 · · ·
(
S z

Nx+Ny

) jNy

+S x
0

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1∑
i1=0

1∑
i2=0

· · ·
1∑

iNx=0

Ji1,i2,···,iNx

(
S z

1

)i1 (
S z

2

)i2 · · · (S z
Nx

)iNx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+S y

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1∑
j1=0

1∑
j2=0

· · ·
1∑

jNy=0

Kj1, j2,···, jNy

(
S z

Nx+1

) j1 (
S z

Nx+2

) j2 · · ·
(
S z

Nx+Ny

) jNy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (20)

The Hamiltonian H̃ is block diagonal with 2N blocks of 2×2 matrices labeled by the index j and all having the form

H̃ j =

(
Ωz j + ω0 Ωx j − iΩy j

Ωx j + iΩy j Ωz j − ω0

)
= Ωz jI2 + 2�Ω j · �s, (21)

with the vector �Ω j having the components
(
Ωx j,Ωy j, ω0

)
and

∣∣∣∣�Ω j

∣∣∣∣ = √
Ω2

x j + Ω
2
y j + ω

2
0. The eigenvalues of H̃ j are

Ωz j ±
∣∣∣∣�Ω j

∣∣∣∣. The Hamiltonian H̃ can thus also be written as

H̃ = H̃1 ⊕ H̃2 ⊕ · · · ⊕ H̃2NB . (22)

Note that the Ωz j depend on the J̃ and K̃ couplings only. Also the Ωx j depend only on the J couplings while the Ωy j

depend only on the K couplings.
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As in [15] we assume that the central spin is decoupled from the bath for times t < 0, and that the central spin and
the bath spins are brought into contact at time t = 0. We assume that at time t = 0 the central spin has a wave function

|ψ(0)〉 =
(

sinα0

cosα0

)
, (23)

so that if α0 = 0 the central spin initially is down, and is initially up for α0 = π/2. Note that the unitary transformation
in Eq. (19) does not change the initial state of the central spin at time t = 0. After the unitary transformation by Pp at
time t = 0 the state of the bath can be written as

∣∣∣Φ̃(0)
〉
=

2NB∑
j=1

c j

∣∣∣ϕ j

〉
with

2NB∑
j=1

∣∣∣c j

∣∣∣2 = 1, (24)

with some complex coefficients c j and {|ϕ j〉} the complete orthonormal set of states taken to be the usual direct
products of the spin up and down states of the NB bath spins. In practice one can regard the c j as the coefficients
obtained after starting with the t = 0 bath wave function |Φ(0)〉 in the orthonormal basis of the eigenvectors of σx for
the x-bath spins and the eigenvectors of σy for the y-bath spins, which with the unitary transformation by P†p gives the
environment wave function of Eq. (24).

The expectation values 〈S �0(t)〉 are independent of the values of J̃i1,i2,···,iNx
and K̃ j1, j2,···, jNy

. With the initial wave
function |Ψ(0)〉 = |ψ(0)〉 ⊗ |Φ(0)〉 this independence is because these terms only enter in Ωz j, and furthermore,〈

S �0(t)
〉
= 〈Ψ(0)| exp (iH t)

(
s� ⊗ I2 ⊗ I2 ⊗ · · · ⊗ I2

)
exp (−iH t) |Ψ(0)〉

=
〈
Ψ̃(0)

∣∣∣ exp
(
iH̃ t

) (
s� ⊗ I2 ⊗ I2 ⊗ · · · ⊗ I2

)
exp

(
−iH̃ t

) ∣∣∣Ψ̃(0)
〉
, (25)

with
∣∣∣Ψ̃(0)

〉
= P†p |Ψ(0)〉. The reason is that

H = PpH̃P†p, so exp
[
iH t

]
= Pp exp

[
iH̃ t

]
P†p , (26)

and the constant terms Ωz j in each block cancel because they commute with everything. One Ωz j term comes from
each of the blocks H̃ in Eq. (26), and exp

[
iΩz jt

]
exp

[
−iΩz jt

]
= 1. Therefore, without loss of generality we set all J̃

and K̃ to zero.
Next we want to trace out the bath spins to be left with the density matrix ρ(t) for the central spin. At t = 0 the

density matrix of the central spin is
ρ(0) = |ψ(0)〉〈ψ(0)| . (27)

Explicitly

ρ(t) = TrB

[
e−iH t (ρ(0) ⊗ ρB(0)) eiH t

]
(28)

= TrB

[
Ppe−iH̃ tP†p (ρ(0) ⊗ ρB(0)) PpeiH̃ tP†p

]
(29)

= TrB

[
e−iH̃ t (ρ(0) ⊗ ρ̃B(0)) eiH̃ t

]
. (30)

Here ρ̃B(0) = |Φ̃(0)〉〈Φ̃(0)|. Writing Eq. (30) in terms of the c j of Eq. (24) and the block diagonal matrices H j of
Eq. (21) gives the final equation for the reduced density matrix for the central spin,

ρ(t) =

(
|c1|2 e−iH̃1tρ(0)eiH̃1t

)
+

(
|c2|2 e−iH̃2tρ(0)eiH̃2t

)
+ · · · +

(
|c2NB |2 e−iH̃

2NB tρ(0)eiH̃
2NB t

)
= |c1|2 ρ1(t) + |c2|2 ρ2(t) + · · · + |c2NB |2 ρ2NB (t) . (31)

Equation (31) shows that the reduced quantum density matrix ρ(t) for the central spin is the sum of 2NB different 2× 2

density matrices ρ j(t). Notice that the initial state of the bath spins enters only in the terms
∣∣∣c j

∣∣∣2. The 2 × 2 matrix
exponentials can easily be calculated using the relation exp

[±i
(
�a · �σ) t

]
= I2 cos (at)± i

(
�a · �σ/a) sin (at) with a =

∣∣∣�a∣∣∣.
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For any expectation value of the central spin, Eq. (31) gives

〈
S �0(t)

〉
=

2NB∑
j=1

∣∣∣c j

∣∣∣2 Tr
[
s�ρ j(t)

]
. (32)

Thus the final result is that for the type of Hamiltonian defined in Eq. (20) (an x-bath plus a y-bath) the time dependence
of the expectation value for any spin operator reduces to the sum over the expectation values of 2NB evolution equations
with different Hamiltonians H̃ j. Equations (31) and (32) are the central results that will be exploited for our efficient
algorithm. Note in particular that only 2 × 2 matrices must be worked with, and hence stored in memory. However,
computationally we do not get something for nothing, in that we have to solve the TDSE for 2NB different Hamiltonians
H̃ j and then sum to get the final expectation value.

4. Symmetry of the Hamiltonian for x, y-baths

Equations (31) and (32) are the central results, and are very general. For the general case where all J and K values
are different one has to sum over 2NB different density matrices ρ j(t) to obtain ρ(t). If there is any symmetry in the
couplings between the central spin and the x-bath spins or the central spin and the y-bath spins, then this symmetry
can be exploited to reduce the number of terms that must be summed. The reduction comes because the symmetry in
the Hamiltonian can make a number of the ρ j(t) identical. As long as some of the ρ j(t) are identical, the initial state of
the bath does not need to have any symmetry in order to combine terms in the sum of Eqs. (31) or (32). For example,
if all ρ j(t) are identical for j ∈ {i, · · · , i + k} then in Eq. (32) one can group together the terms that enter the sum to be

〈
S �0(t)

〉
= · · · +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝ i+k∑

j=i

∣∣∣c j

∣∣∣2⎞⎟⎟⎟⎟⎟⎟⎠Tr
[
s�ρsym(t)

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ + · · · (33)

with the definition ρ j(t) = ρsym(t) for j ∈ {i, · · · , i + k}. Therefore in this example to calculate the term in curly
brackets one only has to solve the TDSE for one block Hamiltonian, rather than for k different block Hamiltonians.
Furthermore, the initial configuration of the bath spins only enters in the sum over j in parenthesis in Eq. (33).

In order to compare directly with the paper of Rao et al [20] we now make two additional assumptions. First, we
assume that the initial state of all the spins (the central spin and all bath spins) is the down state, |Ψ(0)〉 = |ψ(0)〉 ⊗
|Φ(0)〉 = | ↓↓ · · · ↓〉. After the transformation with Pp this makes all the |c j|2 equally probable, so |c j|2 = 2−Nx−Ny .
Furthermore we assume that there are only 2-body interactions with all couplings identical, which are of strength
J2 and K2. Therefore, we have equal couplings between the central spin and all spins in the x-bath and y-bath,
respectively. Then we can organize the sum over the 2Nx x-bath spins into ones that are identical, namely classified by
the projection mx onto the z-axis of the Nx spins. There are

λNx,mx =

(
Nx

Nx/2 − mx

)
=

Nx!
(Nx/2 − mx)! (Nx/2 + mx)!

, (34)

identical vectors ΩNx,mx for −Nx/2 ≤ mx ≤ Nx/2 with mx having integer steps. Similar definitions apply to the Ny

spins of the y-bath. The Hamiltonian of each 2 × 2 block has the form of Eq. (21). The result for 〈S z
0(t)〉 is thus the

sum over 2NB terms that explicitly are

(
0 1

)
exp

[
iH̃ jt

] 1
2

(
1 0
0 −1

)
exp

[
−iH̃ jt

] ( 0
1

)
=

1
2

ω2
0 +

(
Ω2

x j + Ω
2
y j

)
cos

[√
Ω2

x j + Ω
2
y j + ω

2
0t
]

Ω2
x j + Ω

2
y j + ω

2
0

. (35)

The initial central spin density matrix reads

ρ(0) = |↓〉 〈↓| =
(

0
1

) (
0 1

)
=

(
0 0
0 1

)
. (36)
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We define
�Ωmxmy =

(
mxJ2, myK2, ω0

)
, (37)

and Ωmxmy =

√
m2

xJ2
2 + m2

y K2
2 + ω

2
0. Then the result for the expectation value of the central spin is

〈
S z

0(t)
〉
=

1

2Nx+Ny+1

Nx/2∑
mx=−Nx/2

Ny/2∑
my=−Ny/2

λNx,mxλNy,my

[(
m2

xJ2
2 + m2

y K2
2

)
cos

(
Ωmxmy t

)]
+ ω2

0

Ω2
mxmy

. (38)

As in reference [20], the quantum purity for the case Nx = Ny = N and K2 = J2 becomes

2P(t) − 1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1 −
√
πNJ2

2

32
t exp

⎡⎢⎢⎢⎢⎣−NJ2
2 t2

32

⎤⎥⎥⎥⎥⎦Erfi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
√

NJ2
2 t2

32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

2

, (39)

which asymptotically for t → ∞ becomes

2P(t) − 1 =
128

N2J4
2 t4
+

24, 576

N3J6
2 t6
+

2, 555, 904

N4J8
2 t8

+ O
(
t−10

)
. (40)

On the other hand when K2 = 0 (or alternatively Ny = 0) then

2P(t) − 1 = exp

⎛⎜⎜⎜⎜⎝−NJ2
2 t2

4

⎞⎟⎟⎟⎟⎠ . (41)

Thus, in the absence of disorder the quantum purity decays to its asymptotic value exponentially in NJ2
2 t2 for one bath

with only x-coupling, while for an x-bath and a y-bath it decays as a power law. We will test whether this is true also
when there is disorder in the couplings Ji and Kj.

5. Decoherence and Thermalization with x, y- baths

We first show how the quantum purity P(t) and von Neumann entropy S(t) approach their asymptotic limit, Fig. 1.
All NB + 1 spins start in the down state. Fig. 1(A) shows that 2P(t) − 1 approaches zero as a power law in N2t4, in
agreement with the asymptotic result of Eq. (40) when there are only two-body interactions. Changing the number
of x-baths or y-baths does not change that the approach to the t → ∞ result is a power law, even if there is some
’disorder’ in the couplings of the x, y-baths. This is very different from when there is no y-bath, only an x-bath (the
orange stars, see also [21]). The power-law, rather than exponential, approach for P and S to their t → ∞ value shows
that the x, y-bath system decoheres much more slowly than does only an x-bath system. Fig. 1(B) shows that also the
von Neumann entropy approaches unity as a power law for x, y-baths, compared to an exponential approach for only
an x-bath. Note that in Fig. 1(B) the red line is only a guide for the eye, since there is no theoretical prediction of how
S(t)→ 1 as Nt2 → ∞. The largest number of bath spins in Fig. 1 is for N = Nx = Ny = 300 for x, y-baths, which has
NB = 600 so the Hilbert space is of dimension 2DB = 2601 ≈ 8× 10180, which certainly could not be computed storing
an entire vector in the Hilbert space. The largest number of distinct 2×2 matrices calculated in the sum of Eq. (31) is
(60 + 1)2(15 + 1)4 ≈ 2 × 108 for the baths with 60 + (2 × 15) = 90 spins in both the x-bath and y-bath.

Figure 2 shows how the quantum purity behaves when the starting state of the central spin is not down. Here all
bath spins start down, and the x, y-baths have N = Nx = Ny. This figure illustrates a problem with the x, y-baths,
namely that unless the central spin starts down (or up) decoherence is not complete in that P(t) does not approach its
expected value of 1/2 but rather saturates at some value which depends on α0. The shown asymptotic value is the
lowest order term from Eq. (40), and is valid only for α0 = 0 or α0 = π/2.

Fig. 3(A) shows the quantity σ(t) from Eq. (12). If all spins start down, then σ(t) = 0 for all t ≥ 0, which means
that thermalization [as measured by σ(t)] occurs before decoherence [as measured by P(t) or S(t)]. Figure 3(A)
shows how σ(t) decreases when the central spin is initially in the down state, but all bath spins start with the c j of
Eq. (24) uniformly distributed between zero and unity (and after assignment of all 2NB random c j values they are
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Figure 1: The quantity 2P(t) − 1 (A) and 1 − S(t) (B) versus Nt2. The starting state is down, α0 = 0. A single bath (orange, *, for Nx = 300 and
J2 = 1 and Ny = 0 and K2 = 0) falls exponentially. The black, green, and brown curves are for Nx = Ny = N , J2 = K2 = 1, and agree with the
asymptotic result (red line) of Eq. (40) for (A) [and is a guide for the eye in (B)]. The blue (�) data points are for three x-baths, one with Nx = 60
and (J2, J3, JA) = (1, 0, 0) and two x-baths with Nx = 15 one with (J2, J3, JA) = (1, 1, 0) and one with (J2, J3, JA) = (1,−1, 0); with the same
couplings and Ny = Nx for the three y-baths, so NB = 180. The cyan (�) points are similar but for the Nx = Ny = 60 baths (J2, J3, JA) = (1, 0, 0)
and the two Nx = Ny = 15 baths (J2, J3, JA) = (1, 0, 1) and (J2, J3, JA) = (1, 0,−1).

divided by
√∑2NB

j=1

∣∣∣c j

∣∣∣2 so the vector Φ̃(0) is normalized). Figure 3(A) shows that for random initial bath states the
thermalization as measured by σ(t) decreases as N increases. In Fig. 3(A) the x, y-baths have Nx = Ny = N. Note that
the largest Hilbert space in Fig. 3(A) is for N = 64, and has a size of 2129 ≈ 7 × 1038, which could not be calculated
by conventional algorithms.

Figure 3(B) shows the expectation value for
〈
S z

0(t)
〉

for the listed couplings for two x-baths and two y-baths. The
initial state of the central spin and all bath spins is down. The maximum number of bath spins is for N = 64, so
NB = 256 and the Hilbert space is 2257 ≈ 2 × 1077. The number of different 2 × 2 matrices calculated in Fig. 3(B) is
only 654 ≈ 1.8 × 107.

Asymptotic = 16/ (t2 J2

2 N)2

N=300 =0 = Start Down
N=150 =0 = Start Down
N=150 =0.1

o

N=150 =1
o

N=150 =2
o

N=150 =5
o

N=150 =10
o

N=150 =20
o

N=150 =45
o

Figure 2: Comparison of the initial state of the central spin, with different initial angles α0. All bath spins start down. These are all for x, y-baths
with Nx = Ny = N and K2 = J2 = 1 (with all other J and K couplings zero).

The x, y-baths are not the most general baths, in particular they do not have any intrinsic dynamics if they are
not coupled to the subsystem. In order to test whether the power-law scaling persists with slightly generalized x, y-
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Figure 3: (A) The quantity σ(t) =
∣∣∣ρ1,2(t)

∣∣∣ as a function of Nt2 for different N = Nx = Ny, with α0 = 0, and K2 = J2 = 1 with all other
J and K couplings zero. The bath spins are started in a random configuration, and five different random bath configurations are shown for
each system size. (B) The expectation value 〈S z(t)〉 for two x-baths and two y-baths, each with N spins so NB = 4N. The two x-baths have
couplings (J2, J3, JA) = (0.9, 0.1, 0.1) and (J2, J3, JA) = (1.1,−0.1,−0.1). The two y-baths have couplings (K2,K3,KA) = (0.9,−0.1, 0.1) and
(K2,K3,KA) = (1.1, 0.1,−0.1).

baths with N = Nx = Ny, we performed Chebyshev polynomial calculations [13, 14] storing the entire 2NB+1 vectors.
The results are shown in Fig. 4. The coupling between the central spin and bath spins only has a coupling of the
form J2,iS x

0S x
i with J2,i uniformly distributed in the range [1 − rx, 1 + rx], and hence would qualify as an x-bath.

However, here we do not limit ourselves to only x-baths, in that we allow intra-bath couplings of the form HB =∑Nx
i, j

(
Jx

i jS
x
i S x

j + Jy
i jS

y
i S y

j + Jz
i jS

z
i S

z
j

)
with J�i j ∈ [−rx,+rx] with i = 1, · · · ,Nx. Similarly, the coupling between the

central spin and y-bath spins only has a coupling of the form K2,iS
y
0S y

i with K2,i uniformly distributed in the range

[1−ry, 1+ry] and has intra-bath couplings of the formHB =
∑Ny

i, j

(
Ky

i jS
x
i S x

j + Ky
i jS

y
i S y

j + Kz
i jS

z
i S

z
j

)
with K�i j ∈

[
−ry,+ry

]
with i = 1, · · · ,Ny. Only if rx = ry = r = 0 do these baths reduce to an x, y-bath. Unfortunately, due to the restrictions
imposed by computer memory on N, we are not able to penetrate the region where one might expect asymptotic
behavior. Therefore the question of whether these generalized baths have a power-law decay to their asymptotic value
is still an open question.

6. Conclusions and Discussion

We have presented an algorithm to efficiently calculate the real-time quantum dynamics of a single spin-1/2 sub-
system coupled to x-bath and y-bath spins. The algorithm only requires that 2 × 2 matrices be stored in computer
memory. This enables calculations for large numbers of bath spins. The largest number of bath spins shown in the
figures had NB = 600, which requires a Hilbert space of size 2601 ≈ 8× 10180. Such a large Hilbert space could not be
calculated even for the next generation of computers that should be capable of exascale computing.

When both an x-bath and y-bath are present, the decoherence as measured by the quantum purityP(t) and von Neu-
mann entropy S(t) decay as a power law in N2t4 if all spins start in the down state. This is in agreement with the
analytical results of Rao et al [20]. This is illustrated in Fig. 1. However, as Fig. 2 shows if all bath spins start
down but the central spin does not start up (or down), decoherence as measured by P(t) is not complete as t → ∞.
Figure 3(A) shows that thermalization as measured by σ(t) depends on the number of bath spins and the initial state
of the bath spins. Figure 3(B) shows how for many x, y-baths the expectation value 〈S z(t)〉 can depend on the bath
size. The results of Fig. 2 and Fig. 3(A) illustrate one difficulty with relying only on x, y-baths for decoherence and
thermalization of the central spin.

Figure 4 was meant to test whether slight generalizations of x, y-baths would have a power-law dependence for
P(t). Unfortunately, the number of bath spins that could be calculated are not sufficient currently to settle this question.

Future results of decoherence and thermalization of x, y-baths will be tested on subsystems of interest that are
larger than a single spin. It is also of interest to see whether the algorithm can be generalized somewhat for baths that
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Figure 4: The quantity 2P(t) − 1 as a function of t
√

N for two baths with only two-body couplings and Nx = Ny = N. If rx = 0 (ry = 0) the
generalized bath is reduced to an x-(y-)bath. For non-zero rx and ry the bath is more general than an x- or y-bath. The theoretical exact value for
r=0 is obtained from Eq. (39), and its lowest-order asymptotic result from Eq. (40).

have their own internal dynamics, unlike the x, y-baths treated here.
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